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Abstract

A mix of emerging technologies promises qualitatively new
memory system capabilities. However, today’s memory con-
trollers and channels constrain heterogeneity. Today’s inte-
gration of controllers on processor dies prevents systems from
accommodating diverse, technology-specific protocols and
schedulers in a modular manner; memory design decisions
must be made during processor design. Moreover, today’s
channel architectures are not flexible enough to accommodate
diverse demands for bandwidth and capacity.

To address these challenges, we present strategies for scala-
bility and heterogeneity, which include (i) disintegrating mem-
ory controllers to support heterogeneous command protocols
in a modular manner; (ii) adding buffers to ensure signal in-
tegrity; and (iii) organizing buffers hierarchically to reduce
latency. We apply these strategies to architect a novel heteroge-
neous DRAM / PCM system. Finally, we present mechanisms
for power-efficient data movement.

1. Introduction

Memory has long been a computing bottleneck [43], which
has been exacerbated by the advent of multi-core processors.
While the traditional memory wall concerned only latency and
bandwidth, a new challenge emerges when provisioning requi-
site capacities for multi-cores at tractable power costs. These
memory capacities are demanded by the rise of big data analyt-
ics (Hadoop), distributed memory caching (e.g., MemCached),
and in-memory storage (e.g., RAMCloud). Unfortunately,
with its power-intensive, high-speed interfaces and its periodic
refresh, DRAM is ineffective at these scales. And without
scaling, average memory capacity per computational task falls
as the number of processors, cores, and threads increases.

Emerging technologies and command protocols comple-
ment DRAM in high-capacity memory systems. DRAM stores
data by placing charge in a capacitor, which requires periodic
refresh and high-performance DDR interfaces to accommo-
date high device bandwidth. In contrast, phase change memory
(PCM) is a non-volatile technology that stores data by altering
the phase of a chalcogenide. PCM is within competitive range
of DRAM performance when architected with on-chip regis-
ters, which improve locality and filter writes [26, 34, 11, 46].
PCM dissipates little static power as a non-volatile, low-
bandwidth technology, which uses a new power-efficient
LPDDR2-N protocol[21].

With heterogeneity, an architecture can exploit PCM power
efficiency and DRAM performance. However, heterogeneity
faces several challenges. First, today’s memory controllers are
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integrated with the processor, forcing architects to make mem-
ory design decisions during processor design. Such integration
constrains heterogeneity as technologies prefer diverse com-
mand protocols. In addition, processor memory bandwidth is
limited by pin count and low-bandwidth memories, like PCM,
may waste valuable pins. Finally, data movement between het-
erogeneous technologies is expensive and intelligent protocols
are needed for power efficiency. To address these challenges,
we make the following contributions:

o Partitioned Controllers. For modular heterogeneity, we
partition memory controller functionality between on-chip
masters and off-chip slaves. Masters relay processor mem-
ory commands to slaves, which implement technology-
specific protocols (§2).

e Hierarchical Buffers. For scalable capacity, we archi-
tect a many-rank system with buffers to ensure signal in-
tegrity. Because each buffer introduces a latency, we orga-
nize buffers hierarchically to reduce hop count (§3).

e Hybrid PCM/DRAM. For efficient heterogeneity, we pro-
vide capacity with many PCM ranks and provide perfor-
mance with a few DRAM ranks. We manage DRAM as a
fine-grained cache, proposing dynamic-granularity cache
fills and read-only policies to reduce data movement and its
associated power costs (§4).

We apply these strategies to DDR3 DRAM and LPDDR2-N

PCM to demonstrate tractable power costs as main memory ca-

pacity scales to tens of ranks and hundreds of gigabytes (§5-6).

For 32 ranks of main memory, a heterogeneous PCM/DRAM

architecture incurs less than a 1.15x performance penalty and

consumes only 0.2x the power of a homogeneous DRAM
architecture. As system capacity increases, DRAM power
costs increase rapidly while those for PCM are flat.

2. Architecting Heterogeneous Controllers

At present, high-performance processors integrate the memory
controller onto the processor die. While integration reduces la-
tency, it also brings unintended limitations in memory system
heterogeneity. First, an integrated controller’s size is limited
by the processor die’s area budget and accommodating differ-
ent protocols and schedulers for different technologies could
significantly increase area costs.

In addition, processor-memory bandwidth is limited by
processor pin count. While conventional DRAM uses high-
speed memory channels, other technologies operate channels
at lower frequencies. Examples include LPDDR* for low-
power DRAM and LPDDR*-N for phase change memory,
which halve the peak channel bandwidth of DDR*. With
integrated controllers, heterogeneous memory systems must
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Figure 1: Memory controller architectures.

operate some of the scarce pins at lower data rates, reducing
aggregate off-chip bandwidth for a given number of pins. Thus,
heterogeneous technologies motivate a different approach and
we propose disintegrated memory controllers.

2.1. Disintegrating Memory Controllers

By disintegrating memory controllers, we reverse a historical
trend toward greater integration. We are motivated by evolving
bottlenecks that make integration less performance-critical,
by memory heterogeneity that makes integration more un-
wieldy, and by new board/module architectures that make new
memory organizations more feasible.

Discrete Controllers (Figure 1a). In the past, controllers
were placed in a separate on-board logic chipset, not on the
processor die. A front-side bus (FSB) connected the processor
and the Northbridge. This organization has several drawbacks
as delays are incurred on the FSB and in the Northbridge.
These delays increase with contention between processors and
contention between memory and I/O requests.

Integrated Controllers (Figure 1b). Integration solves
these problems by communicating directly with memory de-
vices, eliminating delays and mitigating contention. Each
processor has a local memory controller, which does not com-
pete with I/O requests. However, today’s integrated controllers
face daunting scalability challenges. These controllers commu-
nicate with memory devices over parallel, multi-drop DDR*
buses, which do not scale given pin constraints. For example,
integrated DDR3 controllers would have difficulty supporting
the 512 data pins needed for eight memory channels.

Buffer-on-board (Figure 1c¢). To address these technol-
ogy constraints, high-performance processors use a buffer-on-
board architecture [19, 23, 14, 45]. Instead of communicating
directly to memory devices, integrated controllers encapsulate
DDR3 commands, addresses, and data into packets. The con-
troller sends these packets to an off-chip buffer via serialized,
point-to-point links that are narrow and fast. The buffer de-
serializes received packets and relays their contents to memory
devices. By replacing wide, parallel buses with narrow, serial
links, processors have higher bandwidth to memory with the
same pin count.

This organization also avoids most of the latency in discrete
controllers. Because each processor has its own buffer dedi-
cated to memory requests, intra-processor and memory-1/O
contention are mitigated. However, serial links and buffers

introduce a new type of latency that is comparable to the for-
mer Northbridge propagation delay. Thus, buffers mitigate pin
constraints but negate, in part, the original delay reductions
from controller integration.

Disintegrated Controllers (Figure 1d). Our strategy to
disintegrate controllers is inspired by buffer-on-board. Since
buffers obscure the latency advantages of full controller inte-
gration, we propose partial integration and partition controller
functionality for modularity. As in a buffer-on-board, we
use serial, point-to-point links for higher off-chip bandwidth.
But instead of implementing protocol commands, the on-chip
controller only packetizes memory requests and pushes the
protocol implementation (e.g., DDR*, LPDDR¥*) off the chip.

By architecting significantly different roles for on- and off-
chip controllers, we accommodate heterogeneous memory
technologies. We refer to the on-chip controller as the master
and the off-chip controller as the slave. The on-chip master
provides a homogeneous interface, receiving memory requests
and relaying them to slaves according to a certain policy. The
off-chip slaves implement heterogeneous protocols, issuing
technology-specific commands to its memory devices.
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Figure 2: Partitioning controller functionality.
2.2. Partitioning Controller Functionality

Master. As shown in Figure 2, the master controller is inte-
grated with the processor. It receives memory requests from
processor caches and forwards them to appropriate slave mem-
ory controllers. The relaying policy could be address-based or
could account for specific memory technology characteristics.
For communication going off-chip, the master serializes mem-
ory requests into a packet and sends that packet to the slave via
a serial, point-to-point link. For communication coming on-
chip, the master receives a packet from the link, deserializes
the packet, and relays data to the processor caches.

Our master controller is a simple device that consists only



of an address decoder, serializer/deserializers (SerDes), and
queues. By reducing the role of the master and shifting the
command protocol to off-chip slaves, this system can extensi-
bly support heterogeneous technologies. With an integrated
controller, protocols must be identified and implemented dur-
ing processor design. In contrast, by separating memory proto-
col implementation from processor implementation, architects
have greater flexibility when deploying technology mixes that
best support diverse applications.

Slave. The slave memory controller receives generic mem-
ory requests from the master and follows a technology-specific
protocol (e.g., DDR*, LPDDR*, LPDDR*-N) when issuing
commands to memory devices. Given queued requests, the
controller schedules commands to maximize parallelism while
enforcing protocol and timing constraints.

Each slave implements a specific protocol and different
slaves may implement different protocols. Since slaves con-
trol memory devices connected via shared memory buses, the
role of the slave is nearly identical to that of a conventional,
integrated memory controller. Slaves and conventional con-
trollers differ only in the link interface. Slaves require SerDes
circuitry because they receive packetized memory requests
from a master over a fast but narrow, serial link. In contrast,
conventional memory controllers receive memory requests
directly from the processor cache controller.

Slave-to-Slave Communication. In addition to master-to-
slave communication, our architecture provides an on-board
interconnect that bypasses the processor. This interconnect
may be used for page migration between heterogeneous mem-
ories. We consider a simple migration protocol.

The master initiates slave-to-slave communication by send-
ing an initiation packet that contains the source address, des-
tination address, and migration granularity. The master is
responsible for scheduling the migration packet amongst all
other memory requests, including those from the processor.

Upon receiving a migration packet, the slaves perform the
required communication according to technology-specific pro-
tocols. For example, migrating pages from DRAM to PCM
would require one slave to issue reads in the DDR* protocol
and another to issue writes in the LPDDR*-N protocol. When
migration is complete, the receiving slave sends a completion
packet to the master.

2.3. Analyzing Link Design Implications

Disintegrated controllers affect several characteristics of the
memory system. Designed for high-performance computing,
the architecture dissipates more link power in exchange for
greater link bandwidth, higher system capacity, and lower
overall system power.

Bandwidth. Fast, serial interfaces between master and
slave increase bandwidth for a given number of pins. For exam-
ple, the IBM Power7 suggests a memory pin-out on a large pro-
cessor die is 448 [23]. A serial interface uses differential sig-
naling, requiring two pins to manage a single link. If maximum

throughput on a serial link is 6.4(Gbps), 448 pins provides a
peak theoretical bandwidth of 224 x 6.4(Gbps)=179.2(GB/s).

In contrast, an integrated memory controller communicat-
ing directly with memory devices can use 448 data pins to
support up to seven parallel buses. Seven DDR3-1600 chan-
nels provide an aggregate theoretical peak of 7x12.8(GB/s)=
89.6(GB/s). Thus, at current technologies, a parallel bus sup-
ports only half the bandwidth per pin when compared to a
serial link.

Latency. However, these serial links introduce a new la-
tency overhead. Neither the transmitter nor the receiver can
process the packet until it receives the whole packet.

_ Packet Size Packet Size
~ Bandwidth  [# of Links] x[Link Bandwidth]

For example, consider sending 72B data packets for a read.

Given a 36-bit interface with 6.4(Gbps) links, the latency
is approximately 2.5(ns). As this delay is added for both
transmitter and receiver side, total delay is 5(ns).

However, each slave implements a complete controller,
which includes a queue and a scheduler. In steady state, packet
serialization and de-serialization latency will be hidden by
queuing delay at the slave for most memory accesses. Packet
de-serialization for a memory request is not exposed as long
as other requests are queued.

Power. Disintegrating the memory controller and linking its
master-slave parts with fast, serial interfaces improves band-
width but incurs a power cost. Although the master’s power
dissipation decreases due to reduced functionality, the newly
introduced slaves dissipate additional power. Master power is
now dominated by SerDes circuitry to serialize and deserialize
parallel data. Recent SerDes chips consume 9 (pJ/bit) [22].
This cost ranges from 4 to 29 (pJ/bit) depending on the desired
data rate and area budget [42]. This cost is incurred twice for
SerDes circuitry (i.e., master and slave).

Putting this 2x9(pJ/bit) overhead at the master and slave
into perspective, DRAM chips consume more than 200(pJ/bit)
[2]. Thus, SerDes may introduce a 10% power overhead.
However, this power cost buys a significant increase in off-
chip bandwidth. In addition to link interface power, the slave
controller dissipates power that is similar to conventional, on-
chip memory controllers (e.g., 13.6(W) for a quad-channel
controller in a 45nm AMD Opteron [5]).

Delay

3. Architecting Rank Parallelism

Although disintegrated controllers enable a heterogeneous
memory system, we may encounter challenges when organiz-
ing the system to provide the requisite bandwidth or capacity.
Emerging resistive memories often incur high write latencies
due to expensive programming mechanisms. For example, a
recently prototyped x16 PCM sustains only 40(MB/s) of write
bandwidth [10]. A high-performance memory architecture
must take low-bandwidth parts and construct a high-bandwidth
system. We present buffer-based architecture that increases
memory parallelism and capacity.



3.1. Inserting Buffers

Given limited device bandwidth and performance, memory
rank interleaving is an effective way to enhance channel band-
width. With a large number of ranks on a memory channel,
we can hide one rank’s latency with operations to other ranks.
However, the number of ranks per channel is limited since
each device causes an impedance discontinuity on the shared
memory bus and degrades signal integrity. We improve signal
integrity by applying recent advances in buffers.
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Figure 3: Buffering with Fully-Buffered DIMMs (FB-DIMM)

Fully-buffered DIMM (FB-DIMM). To increase rank
count while ensuring signal integrity, a FB-DIMM controller
does not communicate directly with memory devices on the
parallel bus. Rather, the controller communicates with an
advanced memory buffer (AMB), which resides on the mem-
ory module (Figure 3). A single FB-DIMM memory channel
supports up to 8 AMBs in series.

Although FB-DIMM enables high-bandwidth, high-
capacity memory systems, it has two significant disadvan-
tages. First, it incurs large, multi-hop latencies due to serial
AMB connections. Second, it incurs large power costs due
to heavy-weight AMB functionality, which includes protocol
conversion, signal calibration, and packet forwarding.

Load-Reducing Buffer (LR-DIMM). The more recent
load-reducing buffer architecture addresses FB-DIMM limita-
tions [38, 18]. Unlike the AMB, LR-DIMM’s buffer does not
perform protocol conversion. Instead, it simply buffers and
re-times signals to enhance signal integrity.

We place an LR-DIMM buffer between the slave and its
memory devices. Due to its light-weight functionality, LR-
DIMM buffers incur little power overhead relative to registered
DIMMs, which are prevalent for server memory [18]. At
current technologies, LR-DIMM buffers increase the number
of ranks per channel by 4 x but adds 5(ns) of delay per hop.
We propose new buffer topologies to reduce hop count.

3.2. Buffering Hierarchically

Because FB-DIMMs use point-to-point links to connect
buffers, they have little choice in topology; buffers are con-
nected in series. In contrast, we use a parallel bus to connect
LR-DIMM buffers, which enables a hierarchical topology
(Figure 4). Trees reduce the number of hops to achieve lower
end-to-end memory latency.

I Memory Bus
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Figure 4: Buffering with hierarchical topology. With 20 buffers
(black), 64 memory ranks (white) share a memory
bus to the slave.

Such hierarchical memory organizations are more scalable.
To attach more than 16 ranks to a channel, we can place buffers
in a two-level tree. As shown in Figure 4, the tree has twenty
buffers, four in level-1 and sixteen in level-2. These buffers
may be placed on either the board or the memory module.
For example, level-1 buffers might reside on the board while
level-2 buffers might reside on the DIMM.

Multiple Ranks and Heterogeneity. For DRAM, buffers
benefit capacity but not bandwidth. At high rank counts,
DDR* and high-bandwidth DRAM devices would quickly
saturate channel bandwidth. For PCM, however, many
devices can share a channel before encountering channel
bandwidth constraints. An eight-chip PCM rank provides
8x40(MB/s)=320(MB/s) of write bandwidth and we would
need more than 20 PCM ranks to saturate a 6.4(GB/s)
LPDDR2-N channel.

Architecting many-rank PCM is complicated by the
LPDDR2-N interface, which has no on-die termination (ODT).
Without ODT, signal integrity challenges mean un-buffered
LPDDR2-N channels can only support the load of four ranks
[28]. Each additional buffer allows the channel to support
four additional buffers or ranks. For example, a maximally
buffered channel supports up to sixteen ranks, using four paral-
lel buffers each driving four ranks. Applied hierarchically, as
in Figure 4, a channel can support up to 64 ranks on a single
channel.

3.3. Modeling Buffer Power

The buffer has three major functions: improving the signal
integrity of clock signals using PLLs, registering input signals,
and driving output signals. For each function, we calculate the
power dissipation and sum to estimate total buffer power.

We start the calculation for registered memory modules
(RDIMMs) and then extend the calculation to our LR-DIMM
buffers.

Clock PLL = Igy;— ok Xfex X Vga X [# clock pins]
Registers = Ly reg XTox X Vg X [# input pins] X[% activity]
Drivers = Igyn—ary X Vaax[# output pins]x (1/2)x[% activity]
Static = IguXVgag

From RDIMM datasheets [1], 14y, x=68(uA/MHz) for the
input clock and Ly, re=16(uA/MHz) for each data input.
Driver current is 14y, 4, = 11(mA) for each data output with



an average 50% duty cycle; drivers do not dissipate power
when driving a logical zero. Because RDIMMs buffer clock,
command, and address signals, power is dissipated for 2 clock
pins and 28 CAS pins. Static current is 20(mA) and supply
voltage is 1.5(V).

Consider RDIMM buffers with 25% utilization. Clocks
dissipate 163.2(mW), registers dissipate 134.4(mW), drivers
dissipate 57.8(mW). Total dynamic power is 355(mW) per
buffer. Static power adds another 30(mW).

To calculate power dissipated by our architecture, we extend
this analysis for LR-DIMM and LPDDR*-N parameters. To
reduce load, LR-DIMMs buffer 108 DQ/DQS signals in addi-
tion to the 28 CAS signals; the analysis must account for the
higher power of 136 input/output pins. On the other hand, the
lower frequencies of LPDDR*-N reduce buffer power. Table 1
shows the net effect.

Table 1: Buffer power for DDR3-1600 and LPDDR2-800, assum-
ing four buffers, each with 25% activity.

‘Wi/buffer ‘W/channel
DDR3 RDIMM 0.355 1.420
DDR3 LRDIMM 0.741 2.964
LPDDR2 RDIMM 0.207 0.828
LPDDR2 LRDIMM 0.482 1.928

Adding buffers to a tree topology affects power in two ways.
If buffers are added in parallel (i.e., widening the tree), the
effect on total buffer power is modest. As parallel buffers
are added, the number of registers and pins will increase but
their utilization will decrease by the same factor. Thus, the net
effect on dynamic power is negligible. And dynamic power
dominates total power.

However, if we add buffers in series (i.e., deepening the
tree), the effect on power is additive. With n-level hierarchical
buffering, each signal is buffered n times. And total buffer
power dissipation is nx that of a single buffer. Our architecture
uses a quad-tree since each buffer can drive four others without
compromising signal integrity in an LPDDR?2 interface [28].
And 2-level buffering is sufficient to support up to 64 ranks.

4. Supporting PCM/DRAM Heterogeneity

We apply the proposed architecture to a heterogeneous
PCM/DRAM system, which exhibits heterogeneity in sev-
eral dimensions. First, we encounter performance heterogene-
ity. PCM latency is approximately 2x that of DRAM and
PCM write bandwidth is significantly constrained [26]. How-
ever, these PCM disadvantages are offset by extremely low
static power dissipation and high cell density. Second, PCM
is non-volatile while DRAM is volatile. Finally, the system
must accommodate two memory protocols. High-performance
DRAM uses DDR3 while PCM uses LPDDR2-N.

The proposed architecture disintegrates memory controllers,
adds buffers, and organizes those buffers hierarchically. Disin-
tegrated controllers support DDR3 and LPDDR2-N in an ex-
tensible manner; each slave implements the necessary protocol.
Buffers enable rank-level parallelism and increase bandwidth

for LPDDR2-N PCM. And hierarchical buffer topologies re-
duce the latency cost of this strategy.

4.1. Navigating Design Objectives

Achieving Target Capacity. Memory system capacity is a
function of the memory chips and the channel width:

Capacity o Bus Width

Chip ~ Chip Width
A memory rank is a set of memory chips that are accessed
in parallel to drive a wide data bus. The number of chips per
rank is determined by the ratio of bus to chip width. If chips
with fewer pins are used, more chips are needed for a given
rank width.

For high capacity, a rank should use a larger number of nar-
rower chips. In contrast, for power efficiency, the rank should
use fewer, wider chips. Chip count and interface circuitry
directly affects DDR3 DRAM background power. At current
technologies, both DRAM and PCM are capable of 4-8Gb
per chip and 8GB per rank [3, 10]. And to target a particular
capacity, we scale the number of ranks. For example, 256GB
requires 32 8GB ranks.

In a heterogeneous system, we distribute these ranks among
available technologies. For example, a system with 25.6(GB/s)
of off-chip bandwidth can support two PCM channels and one
DRAM channel, providing 12.8(GB/s) of bandwidth to each
technology. We propose an architecture that (i) distributes
the requisite PCM ranks across two channels and (ii) adds
a few DRAM ranks on a single channel. Because PCM’s
LPDDR2-N consumes less power than DRAM’s DDR3, using
PCM to meet the capacity target is efficient. Power-intensive,
low-capacity DRAM is used as a cache.

Balancing Bandwidth. By disintegrating the memory con-
troller, we separate the provision of off-chip bandwidth and
individual channel bandwidth. The former is determined by
master-to-slave serial links and pin count. The latter is deter-
mined by slave-to-memory parallel buses and buffer organi-
zation. While 32 serial links can support up to 25.6(GB/s)
of aggregate master-slave communication, the partitioning of
these serial links amongst slaves determines the bandwidth to
DRAM versus that to PCM.

Suppose we split 25.6(GB/s) of aggregate off-chip band-
width equally, providing 12.8(GB/s) to each of the DRAM and
PCM slaves. Since DDR3 has a peak bandwidth of 12.8(GB/s),
the DRAM slave should support only one such channel. On
the other hand, LPDDR2-N has a peak bandwidth of 6.4(GB/s)
and the PCM slave should support two such channels.

PCM write bandwidth is of particular interest since it de-
termines the performance of persistent writes, which are im-
perative for file systems and software checkpointing. PCM
chips can sustain 40(MB/s) of write bandwidth [10]. With 16
ranks, each PCM channel supports 5.12(GB/s) of write band-
width. Note that the peak bandwidth limit for LPDDR2-N is
400MHz x 2DDR x 8B /bus = 6.4(GB/s). Thus, we can use

Capacity = x [# of Ranks]




up to 80% of the PCM channel’s peak theoretical bandwidth
during periods of sustained writes.

| Core | | Core | | Core | | Core |

| Master Memory Controller |

<— Serial Tnterconnects ——> ﬂ]]]]]]]]]]]]]]
DDR3-DRAM
LPDDR2-N PCM Controller
Controller

<— Memory Bus ——>

Figure 5: PCM/DRAM Heterogeneity. Memory controllers are
disintegrated and slaves implement heterogeneous
command protocols. Hierarchical buffer topology
enables high-capacity PCM channels. DRAM man-
aged as cache for performance.

Architecting Heterogeneity. Figure 5 presents the hetero-
geneous PCM/DRAM system. The on-chip master relays
memory requests from the core’s last-level caches to one
of two slaves. One slave controls PCM and supports the
LPDDR2-N protocol on two channels with a total of 8 buffers
and 32 PCM ranks. The other slave controls DRAM and sup-
ports the DDR3 protocol on a single channel with 4 DRAM
ranks. Between the slaves, we insert serial links to support
3.2(GB/s) of slave-to-slave bandwidth.

4.2. Managing Data Movement

In an asymmetric architecture, with large PCM capacity and
small DRAM capacity, data management is imperative. If
the master controller were to relay memory requests based
on address space alone, DRAM would be rarely used and its
master-slave bandwidth would be under-utilized. Thus, the
master must orchestrate page placement and migration.
Baseline Caching and Migration. Management policy for
heterogeneous memory have been previously studied. For
example, we might organize DRAM and PCM hierarchically,
using a small DRAM to cache 4KB PCM pages [34]. All
requests query DRAM first. Upon a page miss, the needed
page is fetched from PCM. When a page is evicted from the
DRAM cache, only its dirty blocks are written back to PCM.
This policy works well if the working set size is comparable
to the DRAM cache size. However, it can generate intolera-
ble migration traffic for workloads with larger working sets.
Handling a miss requires reading 4KB from PCM and writing
it into DRAM. An eviction would further require reading up
to 4KB from DRAM and writing it into PCM. Up to 16KB of
read and write activity on memory ranks could be generated
due to a miss in the last-level cache for 64B of data. Migration
traffic could exceed useful memory request traffic.
Alternatively, we might track page popularity in the mem-
ory system to migrate hot pages into DRAM and cold pages

into PCM [36]. Unlike an inclusive cache policy, migration
policies require address re-mapping. Unfortunately, several
4KB pages tend to become hot at the same time, requiring
bursts of heavy migration traffic and producing imbalances in
PCM and DRAM channel utilization.

Fine-Grained DRAM Caching. These difficulties in mi-
gration traffic arise from the large 4KB DRAM cache blocks.
To enable fine-grained DRAM caching, we must manage cache
tag overheads and cache fill granularity. We begin with prior
work for large DRAM caches and extend it with dynamic
granularity prefetch and read/write policies.

Consider a DRAM cache with 4KB pages, each comprised
of sixty-four 64B blocks, and a 40-bit address space. A 1GB
DRAM cache with 4KB blocks require 875KB of tag. The
same 1GB cache with 64B blocks requires 68MB of tag, which
makes such a naive approach prohibitively expensive. To
reduce tag overheads, we rely on MissMaps [27], which hold
cache tags at 4KB page granularity but enable 64B block
management by associating with each page a vector of block-
valid bits (e.g., 64 bits to track 64B blocks in a 4KB page).

We have sized our MissMap to maximize the performance
benefits of a 1GB cache [27]. Our MissMap contains 2.875MB
of tag and valid bits. These tags are managed by the master
controller and occupy the processor die area that is saved by
disintegrating the memory controller and shifting protocol
functionality off-chip to slaves. A few MB of state is a modest
cost for performance in a high-capacity memory system.

Dynamic Granularity DRAM Caching. We extend
MissMaps for dynamic granularity prefetch to improve band-
width utilization. The master dynamically tunes the number
of fetched blocks instead of fetching all blocks in the page
after a page miss. If a page experiences successive accesses
to different blocks, the master increases block prefetch for
this page. On the other hand, if a page experiences few block
misses, the master decreases prefetch.

To implement dynamic granularity prefetch, we add a three-
bit counter to each page’s MissMap entry. If the counter
has value i for a page, the master fetches 2! blocks when the
master hits this page but misses a block within it. The counter
is initialized to i = 3 upon a page’s first access. The counter
increments for every page hit that misses the desired block.
Counters decrement at a regular period (e.g., 500(ns)).

Although the DRAM channel enhances performance, we
must manage contention and moderate requests to it. The
master throttles DRAM use by counting the number of oper-
ations to each rank. If more than n operations are sent to a
rank within time 7, the master controller decrements prefetch
counters for all ranks. For example, n is 64 operations and
t is 3648ns, which is determined by the latency of those n
operations: t = nx (tRC +BL/2).! Moreover, to avoid rapid
and de-stabilizing changes in prefetch counters, the controller

14RC is delay between read and subsequent command. BL/2 is transfer
time determined by burst length divided by 2 in DDR to count cycles.
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Figure 6: Management for fine-grained DRAM cache. Flow im-
plemented by master controller.

imposes a minimum interval between throttling decrements.
Only one such decrement can happen every 250(ns).

Read-only DRAM Caching. Because the last-level pro-
cessor cache has already exploited much of the available 64B
locality, a block evicted from processor caches may have little
chance of re-use. This behavior and the desire to reduce migra-
tion overheads motivate read-only DRAM caches (Figure 6).

Given a write miss, the master uses a no-write-allocate
policy. Given a write hit, the master memory controller directs
the block write to PCM and invalidates the DRAM cache block
by setting the appropriate MissMap bit. Because DRAM
is never written, invalidations are sufficient. Evictions and
expensive data migration to PCM are not required.

This architecture may require additional PCM reads for par-
ticular read-write-read sequences. An address might be read
into DRAM, written into PCM and invalidated in DRAM, and
then re-read into DRAM. Had the DRAM cache accommo-
dated writes, the second read into DRAM from PCM would
not have been necessary. But this second read is relatively
inexpensive; PCM read bandwidth is abundant relative to its
write bandwidth.

Finally, read-only DRAM caching supports system applica-
tions of PCM non-volatility, like file system consistency [13]
and high-performance checkpointing [17]. If the file system
writes directly to persistent storage, DRAM-PCM coherence
and file system consistency is ensured. And safety improves
since file system data becomes persistent more quickly; data
is not buffered in volatile DRAM. Software checkpointing
no longer performs bulk copies of DRAM pages into PCM.
Instead, checkpoints can be distributed in time as individual
writes occur during program execution. Combined with mech-
anisms for PCM fault tolerance [39, 44], these capabilities
improve system resilience.

Endurance Implications. With a read-only DRAM cache,
all memory writes are directed to PCM, which may seem
to contravene conventional wisdom. But cache blocks are
less often re-used after last-level cache eviction, which means
processor SRAM caches have already exploited opportunities
for write coalescing. Writing multiple times to the same block
in the DRAM cache, the case in which using read-only DRAM
would harm PCM endurance, is not common.

For writes that are required, however, architectural solu-
tions and technology trends mitigate endurance. Even without

DRAM, Lee et al. find that associative page buffers in PCM
chips can coalesce writes and produce years of lifetime. Such
buffers, with differential writes, have recently been imple-
mented in hardware prototypes [11]. Many other mechanisms
have been proposed to reduce and level writes [9, 46, 33].
Qureshi et al. provide a good survey [35].

Finally, these architectural mechanisms demonstrate years
of lifetime assuming 107 — 108 write cycles per cell [26, 33].
More recent prototypes are capable of 10'! writes and project
future devices capable of 10! writes [24]. With such technol-
ogy advances, lifetimes extend to tens or hundreds of years.

5. Experimental Methodology

We use Marss86 [31] and modify DRAMSim?2 [37] for cycle-
accurate processor and memory simulation. Marss86 simu-
lates x86 instructions in full system simulation. DRAMSim?2
simulates DDR3-based DRAM and LPDDR2-N-based PCM.
We use technology parameters from a recent PCM prototype
[10], which achieves a peak write bandwidth of 40(MB/s) per
chip. Table 2 summarizes simulation parameters for a 4-core
multiprocessor and 25.6(GB/s) of chip-edge bandwidth.

Table 2: Architectural simulation parameters

Four 2(GHz) 4-way 00O cores
CPU 128KB Private L1 Instruction Cache
128KB Private L1 Data Cache
L2 Cache Shared 8-way 8MB L2, 64B Cache Line
Memory Closed-Page, Queue per Rank,
Controller Rank then Bank Round-robin Scheduling
Technology PCM DRAM
Protocol LPDDR2-N-800, x8 DDR3-1600, x4
Micron DDR3[4]
- LPDDR2-N[21 trep =13.75(ns
Timing tRCD:75(ns)%lO} zﬁfD:13.75(xfs) )
tgp =13.75(ns)
Cell Read 2.47(pJ/bit) [26] -
Cell Write 16.82(pl/bit) [26] -
IDD Value LPDDR2-N [21] Micron DDR3[4]
Rank Write BW 320(MB/s)[10] 12.8(GB/s)

Memory Performance. This experimental methodology
differs from trace-driven simulation, which traces last-level
cache misses and then feed loads/stores into a memory sim-
ulator. Trace-based approaches are fast and easy because it
separates the processor and memory. However, without an
integrated processor model, trace-driven memory simulation
does not fully capture the effects of memory latency increases
or of bandwidth contention, which affect processor instruction
scheduling.

Another detail we simulate is the constraint on write
bandwidth to PCM. Related work limits PCM write band-
width by simulating a high write latency. However, modern
PCMs buffer writes and manage “lazy-writes” within each
device [11]. Thus, we limit the number of writes sent to PCM
devices, which is more realistic.

Memory Power. Power is determined primarily by the
memory protocol and chip interfaces. To achieve the high data
rates of DDR3-1600, DRAM interfaces implement expensive
link circuitry (delay-locked loops - DLLs, on-die termination -



Table 3: Workload characterization

Workload MPKI g‘;‘:{ﬁg

WDI1 leslie3d leslie3d mcf mcf 31.16 198.9
WD2 Ibm leslie3d libquantum mcf 38.38 404.1
WD3 Ibm 1bm libquantum libquantum 38.25 575.6
WD4 bwaves leslie omentpp sphinx3 11.70 302.6
WD5 GemsFDTD libquantum milc zeusmp 7.24 248.6
WD6 GemsFDTD libquantum milc milc 6.31 181.6
WD7 bzip libquantum milc omnetpp 4.69 129.0
WD8 cactusAMD gcc gobmk zeusmp 2.97 110.7
WD9 astar gobmk hmmer soplex 0.43 23.9

ODT), which incur large static power costs. In contrast, PCM
latencies limit data rates, eliminating the need for DLLs and
ODT. For this reason, LPDDR2-N dissipates little background
power. Moreover, PCM non-volatility obviates refresh. Al-
though expensive PCM programming increases core energy
relative to those of DRAM [26], interface and refresh energy
dominate in high-capacity systems.

We simulate all power modes. In our experiments, back-
ground power increases less than linearly with the number
of ranks, indicating that power modes are invoked. But by
interleaving data across many ranks for bandwidth, opportuni-
ties for rank power-down are constrained in high-performance
systems[29]. With extensive operating system or memory con-
troller support, pages may be consolidated into a few active
ranks, allowing other ranks to power-down [25].

Workloads. We select memory-intensive workloads from
SPEC CPU2006. We simulate 800 million instructions af-
ter fast-forwarding 8 billion instructions. The nine multi-
programmed sets have different characteristics, as shown in
Table 3. WD1-3 have a high number of last-level cache misses
per thousand instructions (MPKI) and are memory-bound.
WD4-7 have medium MPKI and WD8-9 have small MPKI.

To accurately evaluate many-rank effects on parallel band-
width and migration traffic, we study four-rank DRAM as a
cache for many more ranks of PCM. For experimental pur-
poses, we shrink DRAM capacity to 128MB and stress test our
migration policies. This methodology emphasizes bandwidth
and neglects potential advantages from fewer page faults.

6. Experimental Evaluation

We first evaluate the scalability of homogeneous many-rank
channels. Each rank is comprised of either DDR3 DRAM or
LPDDR2-N PCM. With hierarchical buffers, channels support
capacity that ranges from 4 ranks to 32 ranks. The PCM

data indicates the feasibility of high-capacity, high-bandwidth
memory systems that scale with tractable power costs.

6.1. Many-Rank Channels

Performance. As the number of memory ranks increase,
greater rank-level parallelism translates into higher sustained
bandwidth. Access latency to a rank can be hidden by those to
others. Figure 7 quantifies these benefits for PCM and DRAM.

As seen in high-MPKI workloads, rank-level parallelism
benefits PCM more since its bandwidth starts from a lower
base due to higher device latencies. For example, in WD3,
sustained PCM and DRAM bandwidth increase by 65% and
16%, respectively, as rank count increases from 4 to 32.

But of course, bandwidth increases only if memory requests
have been queued and access different ranks. When PCM
bandwidth is limited by device delay rather than queuing de-
lay, as in WD6-9, additional ranks simply increase capacity
without benefiting data transfer rates.

Power. Many-rank channels incur a power cost for their
capacity and performance. And these costs increase rapidly for
a homogeneous DRAM architecture. In contrast, PCM power
costs are far more attractive as capacity increases. PCM’s
advantage over DRAM arises from its low static power dissi-
pation, which is an increasingly large fraction of the total in
high-capacity memory systems.

Consider a high-MPKI workload like WD3. In Figure 8,
DRAM background and refresh power comprise 50% of the
total in a 4-rank system. But this cost increases to more than
75% in a 32-rank system. At high capacities, these DRAM
power costs are an efficiency bottleneck.

In contrast, PCM power scales far more slowly with ca-
pacity. This efficiency arises from its device interface and its
non-volatility. As a technology with higher latencies, PCM
operates its channels at lower frequencies. At these lower data
rates, PCM devices do not require power-intensive DLLs and
ODT circuitry, which accounts for much of the background
power in high-performance DRAM. And as a resistive mem-
ory, PCM does not require refresh. These effects keep static
power tractable as PCM capacity increases to 32 ranks.

Energy. Figure 9 presents the energy per bit transferred.
As capacity increases, PCM energy is flat. In contrast, DRAM
energy increases rapidly as its increasing background and
refresh power is amortized over the same number of data
transfers. These effects are particularly problematic for low-
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Figure 9: Energy as rank count increases.

MPKI workloads, which perform few transfers.

Alternatively, consider high-MPKI workloads WD1-3. To
fetch a 32-bit word, high-capacity DRAM consumes up to
600(pJ/bit) or 19.2(nJ/word). To put these numbers into per-
spective, a high-performance processor consumes 20(nJ/inst)
[15]. And an instruction may require several words of data. As
capacity increases, the costs of DRAM data movement would
dwarf those of executing an instruction.

In contrast, PCM consumes 200(pJ/bit) or 6.4(nJ/word).
And these costs remain relatively flat as capacity increases and
as memory activity varies. Unlike DRAM, PCM consumes
energy in proportion to activity regardless of capacity. Thus,
PCM is attractive for high-capacity memory systems.

For perspective, note that energy per bit is calculated by
dividing power dissipated by utilized bandwidth (mW/Gbps).
DRAM energy per bit tends to be large when bandwidth uti-
lization is low; static power is a large fraction of the total and
static power is amortized over few bits transferred.

This effect is most pronounced in high-capacity, many-rank
memory systems since static power increases linearly with
the number of ranks while dynamic power is a function of
workload (and thus unaffected). As a result, energy per bit
in our many-rank setting is larger than that in settings with
fewer ranks (e.g., 200 versus 60(pJ/bit)). These numbers can
be verified by invoking Micron’s power calculator with low
channel utilization (e.g., 15%) [2].

6.2. Heterogeneous Memory Architecture

While PCM efficiency is attractive, DRAM may be required
to supplement performance. We evaluate our management
policy on a PCM/DRAM system (§ 4), comparing it against
homogeneous baselines and alternative policies.

e DRAM (2C16R) — Homogeneous DRAM with two chan-
nels and sixteen ranks each.

e PCM (2C16R) — Homogeneous PCM with two channels
and sixteen ranks each. Provides an equal channel compari-
son for DRAM (2C16R) but halves bandwidth.

e PCM (4C8R) — Homogeneous PCM with four channels and
eight ranks each. Provides an equal bandwidth comparison
for DRAM (2C16R) but doubles channel count.

e Hetero (Base Cache) — Heterogeneous PCM/DRAM with
32 PCM and 4 DRAM ranks. Manages DRAM as simple
cache (§4.2, [34)).

e Hetero (Base Migrate) — Heterogeneous PCM/DRAM
with 32 PCM and 4 DRAM ranks. Manages DRAM with
hot/cold page migration (§4.2, [36]).

e Hetero (New Cache) — Heterogeneous PCM/DRAM with
32 PCM and 4 DRAM ranks. Manages DRAM with fine-
grained caching, dynamic granularity cache fill, and read-
only policies (§4.2).

These systems have the same theoretical peak bandwidth of

25.6(GB/s) to the processor. These systems provide 32 ranks

of capacity. In the heterogeneous systems, PCM is supported
by 4 ranks of DRAM cache.

Performance. Replacing homogeneous DRAM with ho-
mogeneous PCM increases run-time, which we measure as the
average delay (cycles) per instruction in Figure 10. Memory-
intensive workloads incur 1.6-1.8x delay as LPDDR2-N
halves channel bandwidth relative to DDR3 and as PCM in-
creases latencies relative to DRAM.

In cases with sufficient memory-level parallelism, such as
WD2-3, distributing PCM ranks across more channels im-
proves performance (2C16R versus 4C8R). More generally,
however, a small DRAM cache reduces the PCM penalty
most effectively. But we must determine how to manage this
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Figure 12: Percentage of reads satisfied by DRAM.

DRAM. With poor management, migration traffic could lead
heterogeneous PCM/DRAM to perform worse than homoge-
neous PCM (e.g., WD3 and base cache).

Base cache/migrate policies have highly variable perfor-
mance. The base cache policy manages DRAM as an inclusive
cache, which performs well for 3 of 9 workloads. The base
migrate policy manages DRAM by migrating hot pages into it,
which performs well for the other 6 workloads. In contrast, our
fine-grained cache policies outperform either or both base poli-
cies across the spectrum of workload behaviors. On average,
we reduce homogeneous PCM (4C8R)’s performance penalty
by 39% when using our new cache policies for heterogeneous
PCM/DRAM.

Balancing Bandwidth Utilization. Differences in perfor-
mance arise from differences in bandwidth utilization. In a
heterogeneous system, memory-to-processor data flows be-
tween two serial interfaces: PCM master-slave and DRAM
master-slave. For performance, we must load-balance PCM
and DRAM transfers. Too much traffic on one technology’s
channel causes contention and under-utilizes the other.

Under an effective management policy, DRAM master-slave
links should be well utilized. DRAM has half the total band-
width to the master (12.8 of 25.6(GB/s) but contributes less
than 0.4% of the total capacity (4-rank DRAM versus 32-rank
PCM), making locality management imperative yet difficult.
Ideally, the relatively small amount of DRAM data should
account for half the transfers to/from the processor.

Figure 11 shows master-slave bandwidth for DRAM and
PCM ranks. The base cache and migrate policies do not bal-
ance load. In the base cache policy, all processor transfers
access DRAM. And because it aggressively prefetches 4KB
pages from PCM, Figure 12 indicates that 99% of reads hit in
DRAM. PCM bandwidth is under-utilized.

Illustrating another extreme, the base hot/cold migration
policy does not use PCM much. DRAM serves fewer than
25% of reads. Hot/cold migrates pages carefully but this leads
to low DRAM use. In Figure 11, only WD2-3 use DRAM
bandwidth in any significant way. Most processor transfers
access PCM; DRAM bandwidth is under-utilized.

Our new cache policies are more effective, dividing transfers
between PCM and DRAM to utilize both channels. For high-
MPKI workloads (WD1-3), our policies throttle DRAM use
due to contention. As shown in Figure 12, DRAM transfers
account for 55% of the total. The other 45% transfers access
PCM. For other workloads, DRAM contention is modest and
up to 80% of transfers involve DRAM. Thus, by dynamically
adjusting cache fill granularity according to DRAM contention,
our policy manages data placement and balances bandwidth
utilization across DRAM and PCM interfaces.

Load-balancing memory interfaces requires migrating data
between technologies. Figure 11 puts this overhead into per-
spective, showing PCM/DRAM slave-slave migration band-
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Figure 14: Power-delay trade-offs for alternative memory architectures. Power and delay are normalized to homogeneous DRAM

and averaged (geometric mean) across workloads.

width. The base cache policy requires frequent 4KB migra-
tions, producing bursty traffic. Such migrations harm per-
formance (e.g., WD3) as the processor must contend with
slave-slave transfers at the DRAM ranks. And in several
cases, migration transfers outnumber useful ones (e.g., WD3-
5). Compared to the baselines, our new cache require fewer
migration transfers measured as a fraction of the total.

Power and Energy. Figure 13 shows energy per bit trans-
ferred, dividing total memory power by the number of bits
transferred to the processor. Note that migrated bits are not
counted as useful work. PCM with a DRAM cache consumes,
on average, 0.34 x the energy of a homogeneous DRAM sys-
tem, which dissipates high background power. Amongst het-
erogeneous alternatives, the base migrate policy is less effi-
cient.

6.3. Heterogeneous System Design Space

For various memory capacities, Figure 14 plots the power
and delay for architectural alternatives. Data is normalized
to a homogeneous DRAM system and averaged across work-
loads. At the smallest 4 rank capacity, any system with PCM
reduces power (0.35x) but incurs large performance penalties
(> 1.3%). Power reductions arise from the low static power
of PCM. Performance penalties are due to higher latency and
lower bandwidth at the PCM device.

Increasing PCM capacity by increasing rank count reduces
delay for most design points. The exception is the base cache
policy, which serves 99% of memory accesses from DRAM
and does not benefit from PCM rank-level parallelism. At
large capacities, our new DRAM policies perform better than
prior policies. Performance incurs less than a 1.15x penalty
as we access both PCM and DRAM in parallel and manage

DRAM more effectively as a fine-grained, read-only cache.
Power is only 0.2x that of a homogeneous DRAM system.
Static and background power are the primary determinants of
efficiency. These costs increase with DRAM capacity, causing
us to favor high-capacity memory systems that use PCM.

7. Related Work

Managing Heterogeneous Memory. Several heterogeneous
memory systems use a small DRAM as a cache for a larger
PCM-based main memory [7, 16, 30, 34]. Ramos et al. sug-
gested a management policy that migrates hot pages to DRAM
while keeping cold pages in PCM[36]. Phadke et al. profile ap-
plication memory accesses for applications and place working
sets into particular heterogeneous DRAM modules, matching
application-specific demands to a module’s power efficiency,
latency, or bandwidth [32]. It employs off-line profiling while
we implement dynamic mechanisms.

Our fine-grained read-only DRAM caching policy outper-
forms previous management policies by reducing migration
traffic while maintaining an appropriate DRAM utilization
level. Migration-induced contention could be mitigated at the
device-level with staged reads, which add registers to DRAM
chips to exploit bank parallelism [8]. In contrast, we mitigate
contention at the system-level, balancing bandwidth utilization
across channels and technologies.

Using Heterogeneous Memory. Condit et al. present a
new file system that improves data safety and consistency with
phase change memory [13]. Dong et al. propose stacking
PCM on DRAM for high-bandwidth HPC checkpointing [17].
These systems could be implemented in our architecture.

Coburn et al. and Volos et al. separately exploit heteroge-
neous non-volatile memory for persistent data structures by



providing programmer-exposed primitives and abstractions
[12, 41]. Such user-level libraries for distinguishing alloca-
tions to DRAM and PCM are not required in our architecture
since all allocations are made to PCM and cached in DRAM.

Hybrid Memory Cube. Recent studies in 3D integration
[20] contrast withour approach to disintegrated controllers.
HMC is made for 3D-stacked DRAM connected to the proces-
sor die via TSV interconnects. Packaging all of these dies to-
gether, HCM cannot disintegrate memory controllers from the
processor and memory technology. Indeed, HCM promotes
greater integration and less flexibility, while we promote less
integration and more flexibility.

Emerging Technologies. While we double per pin band-
width by using serial links, photonics might further increase
bandwidth using dense wavelength-division multiplexing [6].
Udipi et al. shift protocol implementation to a control die in
3D-stacked memory. Because stacks’ controllers share a bus,
a reservation protocol is required [40]. In contrast, we propose
disintegrated slave controllers with point-to-point links to the
processor, obviating the need for reservations.

8. Conclusion

We present a scalable heterogeneous memory architecture
that utilizes both DDR3 DRAM and LPDDR2-N PCM tech-
nologies. We implement this architecture with disintegrated
memory controllers, with buffers for signal integrity, and with
hierarchical rank organization for capacity. Data movement is
expensive and we present DRAM cache management policies
that provide performance and energy efficiency.
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