
Unlocking Wordline-level Parallelism for Fast Inference on
RRAM-based DNN Accelerator

Yeonhong Park, Seung Yul Lee, Hoon Shin, Jun Heo, Tae Jun Ham, and Jae W. Lee

Seoul National University
{ilil96, triomphant1, zmqp1, j.heo, taejunham, jaewlee}@snu.ac.kr

ABSTRACT
In-memory computing is rapidly rising as a viable solution that can
effectively accelerate neural networks by overcoming the memory
wall. Resistive RAM (RRAM) crossbar array is in the spotlight as a
building block for DNN inference accelerators since it can perform
a massive amount of dot products in memory in an area- and power-
efficient manner. However, its in-memory computation is vulnera-
ble to errors due to the non-ideality of RRAM cells. This error-prone
nature of RRAM crossbar limits its wordline-level parallelism as
activating a large number of wordlines accumulates non-zero cur-
rent contributions from RRAM cells in the high-resistance state as
well as current deviations from individual cells, leading to a sig-
nificant accuracy drop. To improve performance by increasing the
maximum number of concurrently activated wordlines, we propose
two techniques. First, we introduce a lightweight scheme that ef-
fectively eliminates the current contributions from high-resistance
state cells. Second, based on the observation that not all layers in a
neural network model have the same error rates and impact on the
inference accuracy, we propose to allow different layers to activate
non-uniform numbers of wordlines concurrently. We also introduce
a systematic methodology to determine the number of concurrently
activated wordlines for each layer with a goal of optimizing perfor-
mance, while minimizing the accuracy degradation. Our proposed
techniques increase the inference throughput by 3-10× with a less
than 1% accuracy drop over three datasets. Our evaluation also
demonstrates that this benefit comes with a small cost of only 8.2%
and 5.3% increase in area and power consumption, respectively.

1 INTRODUCTION
Deep neural networks (DNNs) have demonstrated very promising
results in multiple task domains of AI such as computer vision,
natural language processing, and robotics. While DNNs effectively
perform sophisticated jobs often surpassing human performance,
they usually accompany a tremendous amount of computation
and high memory demands. For example, ResNet-18 [10] requires
1.83 Giga-operations for processing a single image from ImageNet
dataset [8] and has 11.7 millions parameters. In conventional Von

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415664

Neumann architecture where computation and data storage are
separated, not only the amount of computation but also the high
data movement of DNN is a performance bottleneck. The limited
memory bandwidth, and more importantly the energy wall severely
restricts the performance [1].

In-memory computing is a powerful paradigm that can largely
cut back the overhead from data movement. Specifically, in the
context of in-memory computing for DNN, resistive RAM (RRAM)
has received a lot of attention. RRAM features high storage density,
fast read speed, and very low energy consumption when organized
in a crossbar array. More importantly, RRAM crossbar array inher-
ently supports highly parallel in-memory dot product operations,
so can execute the core computations of DNN. The weights are
programmed as conductances of an RRAM crossbar and the feature
maps are applied to the wordlines of the RRAM crossbar as voltage
pulses. The voltage pulses induce currents flowing through the cells,
and the currents are accumulated on the bitline to represent the out-
put of a dot product. Exploiting such properties, many RRAM-based
DNN accelerators have been proposed [1, 4, 6, 23, 26, 34].

The dot product operation of RRAM crossbar, however, is error-
prone. The current flowing through the bitlinewhich corresponds to
the dot product output can result in a wrong value because of RRAM
cell’s non-ideality. Particularly, the incorrect readout of RRAM
crossbar’s bitline current happens due to the following two factors:
(i) the accumulation of high-resistance state cells’ currents, and (ii)
the current variations resulting from cell resistance variations.

Such an error-prone nature of in-memory dot product of RRAM
crossbar imposes a restriction on its parallel execution. Ideally,
all the wordlines of RRAM crossbar array (e.g., 256, 512) can be
activated at once to perform a bulk of dot products in parallel.
However, the more the wordlines are activated, the more the devia-
tions are accrued along the bitline current. For this reason, existing
RRAM-based accelerator chips often limit the maximum number
of (concurrently) activated wordlines (MAW). For example, recent
RRAM prototypes concurrently activate only 9 out of 256 word-
lines [2, 31] or 16 out of 512 wordlines [33]. This proves our point
that the reliability issue limits the performance of an RRAM-based
DNN accelerator by preventing a full exploitation of the potential
wordline-level parallelism in RRAM crossbar arrays.

In this paper, we introduce two key techniques that can alleviate
the performance degradation stemming from this reliability issue.
First, we propose a way that can mitigate the readout errors by
dynamically compensating for the amount of bitline current re-
sulting from the high-resistance state cells in a very efficient way.
Specifically, our technique turns the difficult task of identifying the
current contributions from the high-resistance state cells into the

https://doi.org/10.1145/3400302.3415664

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Y. Park, et al.

(a)

V1

V2

G1 (1/R1)

G2 (1/R2)

V1⋅G1

V2⋅G2

V1⋅G1 + V2⋅G2

(b)

DAC

DAC

DAC

DAC

S&H S&H S&H S&H

Column Mux

A
D

C

Output Reg

Column Mux

A
D

C

<
<

A
d
d
e
r

<<

A
d
d
e
r

Shift-and-Add

Figure 1: (a) A dot product computation in an RRAM cross-
bar array. (b) RRAM crossbar array for parallel dot products.

easy task of counting the number of 1s in the input, and presents
an efficient hardware implementation for the proposed technique.
Second, motivated from the fact that the end-to-end accuracy is
less sensitive to an increase in the MAW for some layers than oth-
ers as they are more resilient to errors and/or have sparser input
characteristics (e.g., lots of zeros), we suggest to exploit different
MAW for each layer in the neural network model. For this purpose,
we also propose a systematic approach to determine MAW for each
layer. By profiling the marginal impact of an increase in MAW on
the end-to-end accuracy for each layer, we can derive proper MAW
for all layers in the model that optimizes performance while satisfy-
ing the accuracy goal. Evaluation results show that our techniques
enable 3-10× speedup on various datasets while maintaining the
accuracy drop within 1% and incurring a limited hardware cost.

In summary, this paper makes the following contributions:

• We analyze the effectiveness of wordline-level parallelism com-
pared to the other performance scaling strategies.

• We propose an effective yet lightweight method to mitigate the
impact of high-resistance state cell currents on the bitline readout
errors.

• We propose to set MAW differently for each layer to maximize
wordline-level parallelism across the entire NN model and intro-
duce a systematic approach that finds an optimized MAW for
each layer with a small search overhead.

• We evaluate the proposed techniques using three datasets, CIFAR-
10, CIFAR-100, and Tiny ImageNet, to demonstrate substantial
throughput gains at a minimal area and power cost.

2 BACKGROUND AND MOTIVATION
2.1 RRAM-based Matrix Multiplication

Accelerator
RRAM Crossbar Array for Matrix Multiplication. RRAM is a
type of non-volatile memory that stores value by programming cell
resistances. Usually, RRAM cells are fabricated in the form of the
crossbar, which is highly dense and energy-efficient. This crossbar
array of RRAM not only works as data storage but also can work as
a very efficient in-memory matrix-vector multiplication accelerator.
Figure 1(a) shows how RRAM crossbar can be utilized to execute
the dot product. Specifically, when voltage 𝑉1 and 𝑉2 is asserted to
the first and the second wordline (row), respectively, the resulting
current at the end of the bitline (column) is equal to𝐺1 ·𝑉1 +𝐺2 ·𝑉2,
which is the dot product between vector (𝐺1 = 1/𝑅1,𝐺2 = 1/𝑅2)
and (𝑉1,𝑉2). Extending this concept, Figure 1(b) shows how a𝑚×𝑛

0 + 12 + 00 + 02 + 1

-1 1 1 0
-1 0 1 -2
1 -2 0 -1
0 1 -1 1

1 3 3 2
1 2 3 0
3 0 2 1
2 3 1 3

×
Add bias (=2)

1

0

0

1

1

1

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

0

0

1

1

1

0

1

1

1

1

0

00

01

10

00

bit 1 bit 0 bit 1 bit 0 bit 1 bit 0 bit 1 bit 0bit 1 bit 0

0 2 1 0

Transpose

0
2
1
0

Cycle
0

Cycle
1 1 1 0 0 1 0 0 1 Cycle

0

Shift & Add

Subtract bias 1 – 2 * 12 – 2 * 10 – 2 * 13 – 2 * 1

1 -2 0 -1Result for input bit 0:

1

1

1

1

Extra
bitline

1

Figure 2: Multi-bit (2-bit) precision matrix-vector multipli-
cation on RRAM crossbar.

RRAM crossbar array (4 × 4 in this example) executes the matrix-
vector multiplication. For this purpose, a wordline driver, a digital-
to-analog converter (DAC), drives the value corresponding to a
vector-to-be-multiplied, while𝑚 × 𝑛 RRAM crossbar array stores
the value for𝑚 × 𝑛 binary matrix. Then, the resulting current at
each bitline (column) is sampled and latched on S&H (Sample-and-
Hold) peripheral. At this point, ADC (Analog-to-Digital Converters),
which is usually shared by multiple bitlines, can be utilized to
convert the latched current value to a digital number. The need for
shift-and-add unit is explained in the following paragraph.
Multi-bit Precision Support. It is technically possible to repre-
sent a multi-bit number with a single resistor. However, in practice,
representing a multi-bit number with a single resistor often incurs
significant programming overhead, peripheral area, and noise un-
certainty [6, 13, 23]. As a result, practical designs [2, 27, 31, 33]
utilize a single-level RRAM cell (i.e., a single resistor is in one of
two states: low-resistance state and high-resistance state). A single
multi-bit value is bit-sliced and stored on multiple bitlines. Simi-
larly, it is also common to utilize a binary logic level at the wordline
driver (i.e., wordline driver either drives a high or low voltage) and
feed inputs in a bit-serial manner [6, 23, 34].

Figure 2 illustrates how RRAM crossbar performs a 2-bit matrix-
vector multiplication. As shown in Figure 2, both matrix and vector
are transposed. At the first cycle, LSBs of the input vector are
converted to the voltage pulses by DAC and sent to the RRAM array.
RRAM array performs analog matrix-vector multiplication, and the
resulting bitline currents are converted back to digital value by
ADC. The ADC outputs are shifted and added to aggregate partial
sums corresponding to different bit positions of each weight value.
After subtracting bias, which is explained in the next paragraph,
the result for input bit 0 is available. In the next cycle, the result
for input bit 1 comes out which is shifted and added with that for
input bit 0 to produce the final output.
Signed Arithmetic. To represent negative numbers with positive
integers, we utilize an efficient weight encoding scheme proposed
in [23]. This scheme scales the range of a 𝑛-bit fixed-point integer
from [−2𝑛−1, 2𝑛−1 − 1] to [0, 2𝑛 − 1] by adding a constant, 2𝑛−1.

Unlocking Wordline-level Parallelism for Fast Inference on RRAM-based DNN Accelerator ICCAD ’20, November 2–5, 2020, Virtual Event, USA

The scaled positive weight values are mapped onto a crossbar array.
If so, the bitline current represents a dot-product result with the
biased weights, which should be compensated as much as the bias
included in the current to obtain the correct result of the signed
arithmetic. This can be done by figuring out the number of 1s in the
input and subtracting the product of that number and the bias (2𝑛−1)
to the bitline output. For this purpose, an extra bitline is added to
each crossbar (in Figure 2). All cells in this bitline are programmed
to low-resistance state (LRS) so that the resulting current represents
the number of 1s in the inputs. We assume this way of handling
signed arithmetic throughout this paper.

2.2 RRAM Accelerator Performance Scaling
Processing Multiple Arrays in Parallel. The performance of
RRAM-based accelerator can be improvedwith variousmechanisms.
The most straightforward way is to simply utilize multiple numbers
of crossbar arrays (along with its peripherals). Such a performance
scaling strategy naturally results in throughput gains proportional
to the increase in area and power. An alternative and better way to
improve performance is to increase the number of wordlines (rows)
or bitlines (columns) processed in parallel.
ProcessingMultiple Bitlines in Parallel. The number of bitlines
processed in parallel is closely related to the number of ADCs.
Technically, RRAM array computation itself happens in a very short
time (often less than five nanoseconds [32, 35]). However, a single
ADC can only read a single value every ADC cycle. As a result, if
there is only one ADC for RRAM array with 128 bitlines, it takes a
total of 128 ADC cycles to retrieve all bitline currents and convert
them to digital values. In this case, a single ADC is effectively
processing each bitline in series. If multiple ADCs are utilized,
multiple bitlines can be processed in parallel, and throughput will
improve accordingly. However, this not only leads to an increase in
the area and power spent on analog-to-digital conversion but also
leads to a proportional increase in the number of S+A (Shift-and-
Add) units to avoid them from introducing a bottleneck.
Processing Multiple Wordlines in Parallel. The best way to
improve the performance is to increase the number of wordlines
processed in parallel. We refer to the maximum number of word-
lines processed in parallel as MAW. Increasing the MAW does not
change the number of ADCs, and no peripheral hardware needs to
be replicated. Instead, ADCs only need to increase its resolution
accordingly. For example, if 32 wordlines are processed in parallel
instead of 8 wordlines, the resulting value can have a range of (0, 32)
instead of (0, 8). As a result, such an extension would require 6-bit
ADCs instead of 4-bit ADCs. Increasing the resolution of ADCs
leads to an increase in the ADC area and power. However, assuming
successive-approximation ADC (SAR-ADC), a widely used ADC
type for its cost-efficiency, the area and power cost from increased
ADC resolution (2-bit) is much less than that of four ADCs which
are required to achieve a similar level of bitline-level parallelism.
An increase in the ADC resolution also requires a bitwidth increase
in S+A (Shift-and-Add) unit as well as a larger output register for
storing wider partial sums. However, their additional cost is also
much smaller than that of replicating ADC and the S+A unit.
Quantitative Comparison of Different Scaling Schemes. Fig-
ure 3 shows the area and power cost of different performance scaling

1 2 4 8 16

Wordline-Level Parallelism Bitline-Level Parallelism CU-Level Parallelism

1 2 4 8
0

1

2

3

4

5

6

7

8

1 2 4 8

N
o
rm

a
liz

e
d
 A

re
a

 O
ve

rh
e

a
d

Performance Improvement

N
o
rm

a
liz

e
d
 P

o
w

e
r

O
ve

rh
e

a
d

Figure 3: Normalized CU area and power increase for three
different performance scaling strategies

Table 1: Baseline CU configuration

CU (1.2GHz, 32nm process)
Component Unit # Specification Power (mW) Area (mm2)

RRAM Crossbar 8 128 × 128 2.4 0.0002
DAC 8 × 128 1-bit DAC 4 0.00017
S+H 8 × 128 - 0.01 0.00004
ADC 8 4-bit ADC 1.46 0.0036
S+A 4 - 0.07 0.00035

Input Reg 1 1KB 1.19 0.0049
Output Reg 1 0.28KB 0.18 0.00199
CU total - - 9.31 0.0113

strategies. We assume a basic unit for matrix multiplication with
eight crossbar arrays of single-level RRAM, which we refer to as
computing unit (CU). The default CU configuration is shown in
Table 1. As a baseline setting, we use 4-bit ADC, assuming the MAW
of 8. The area and power models for analog components are derived
from ISSAC [23]. We synthesize the digital components with the
40nm TSMC standard cell library and scale their area and power to
the same technology as the analog components (32nm). For ADC
area scaling across different resolutions, we scale each component
area and power from a SAR ADC [16] with the following rules [22]:
i) exponential area increase across resolutions for the capacitive
DAC, and ii) linear area increase across resolutions for the other
components including reference buffer, memory, and clock. We
linearly increase the ADC cycle time with the resolution growth.
From the figure, we can conclude that exploiting wordline-level
parallelism (i.e., increasing the number of wordlines to process in
parallel) is a much better way to improve the performance than
CU-level parallelism (i.e., increasing the number of CUs) or bitline-
level parallelism (i.e., increasing the number of bitlines to process
in parallel). However, in practice, this is a challenging task for the
reasons outlined in the following section.

2.3 Challenges in Exploiting Wordline-level
Parallelism

The main challenge of exploiting wordline-level parallelism stems
from the non-ideality of RRAM cells. As the MAW increases, more
errors resulting from each RRAM cell are accumulated and end up
inducing errors on the ADC readout output. Specifically, two RRAM
characteristics act as the main hindrances to the MAW increase:
small RRAM On/Off ratio and cell resistance variation.
Small On/Off ratio.When mapping weight values of neural net-
works on RRAM crossbar arrays, cells representing logical zero are
programmed as high resistance state (HRS), and cells representing

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Y. Park, et al.

0%

20%

40%

60%

4 8 16 32

A
cc

ur
ac

y

R=15 R=25 R=35

0%

20%

40%

60%

4 8 16 32

A
cc

ur
ac

y

σ=0.02 σ=0.04 σ=0.06

(a) σL=0.04 (b) R=25

σL=0.02 σL=0.04 σL=0.06

Figure 4: Impact of MAW on Top-1 inference accuracy of
ResNet-18 [10] on Tiny Imagenet [18]. RRAM cells with
varying characteristics (i.e., On/Off ratio 𝑅 and LRS Cell re-
sistance deviation 𝜎𝐿) are used. X-axis represents MAW.

logical ones are programmed as low resistance state (LRS). Cells
do not pass any current when the corresponding wordline is not
activated (input 0). When the corresponding wordline is activated
(input 1), ideally, HRS cells should not pass any current to represent
logical zero, and only LRS cells should pass a constant amount of
current (𝐼𝐿𝑅𝑆). However, in practice, HRS cells pass non-zero cur-
rent (𝐼𝐻𝑅𝑆). Such currents can be accumulated, and the accumulated
currents may eventually become as much as the current for the
LRS cell (𝐼𝐿𝑅𝑆). At that point, the read output is likely to be wrong.
This may not be an issue for some RRAM cell types [20, 29] that
have a very high ratio (e.g., 104) between the resistance of HRS and
LRS, called On/Off Ratio. On the other hand, there are cells with
much lower On/Off ratio (e.g., 15) with other benefits such as lower
leakage current, lower programming cost, higher density, or/and
higher retention time [30]. For such cells, this becomes a signifi-
cant issue. For example, if the On/Off ratio is 15, accumulating 15
currents for HRS state (i.e., 15 𝐼𝐻𝑅𝑆) may result in the ADC output
of 1 since it ends up producing the current for LRS state (𝐼𝐿𝑅𝑆).

This is not something one can statically correct by judiciously
setting the reference current because different logical values can
lead to a single current value. For example, 15 zeros and a single 1
out of 16 total activated wordlines result in a current of 15𝐼𝐻𝑅𝑆 +
1𝐼𝐿𝑅𝑆 . Meanwhile, two 1s out of two total activated wordlines also
result in a current of 2𝐼𝐿𝑅𝑆 , which is same as the previous one.
Cell Resistance Variation. RRAM cells are typically composed
of metal-oxide layers in-between two metal electrodes. By apply-
ing appropriate voltage/current to a cell, oxygen vacancies in the
metal-oxide layer either form or breakdown conductive filament
leading to resistance change. This formation of conductive fila-
ment involves randomness, and therefore even with extensive pro-
gram/read scheme, some variation in the resistance of RRAM cell is
inevitable [11]. It has been reported that, for both HRS and LRS cells,
the resistance follows the lognormal distribution characterized by
the resistance value and resistance deviation for each state [12].
Such statistical randomness in cell resistance leads to a deviation of
bitline current. When the MAW is small, this is not really a problem
since a single cell’s current variation typically falls within the noise
margin of ADC. However, when multiple cell variations are accu-
mulated, the resulting value has a higher variance. This is especially
problematic since this error follows the lognormal distribution that
can exhibit a high deviation.
Effect of the MAW on Accuracy. The non-idealities of RRAM
cells explained above are significant problems, and they in fact act
as a limiting factor when scaling the MAW. For example, practical
RRAM-based DNN accelerators [2, 27, 31–33] does not concurrently

process all wordlines of RRAM crossbar. For example, recent RRAM
macros can concurrently activate only 9 out of 256 wordlines [2, 31]
or 16 out of 512 wordlines [33].

Figure 4 shows the impact of adjusting MAW on neural network
model accuracy across different RRAM cells with varying character-
istics. For this experiment, we faithfully followed the methodology
of DL-RSIM [19] for the accuracy simulation. As the baseline set-
ting, we choose On/Off ratio (𝑅) and resistance deviation of LRS
(𝜎𝐿) and HRS cell (𝜎𝐻) to be 25, 0.04, and 0.4 respectively, assuming
an oxide-based (𝐻 𝑓𝑂2) RRAM [9]. For comparison, we also experi-
mented with 𝑅 of 15 and 35, and 𝜎𝐿 of 0.02 and 0.06. As a baseline
setting, we configured reference currents of ADC in a way that
maximizes the margin by taking a mean of all possible currents
for each logical value [19]. For example, when MAW is 8, we dis-
tinguish between logical 1 and logical 2 by judging whether the
input signal is smaller or bigger than the halfway point between the
mean of 𝐼𝐿𝑅𝑆 , 𝐼𝐿𝑅𝑆 + 𝐼𝐻𝑅𝑆 , ..., 𝐼𝐿𝑅𝑆 + 7𝐼𝐻𝑅𝑆 (considering a varying
number of activated wordlines from one to eight) and the mean of
2𝐼𝐿𝑅𝑆 , 2𝐼𝐿𝑅𝑆 + 𝐼𝐻𝑅𝑆 , ..., 2𝐼𝐿𝑅𝑆 + 6𝐼𝐻𝑅𝑆 .

As shown in the figure, the model accuracy drops to near-zero
once the MAW exceeds 𝑅. Even before then, the accuracy drops
substantially (e.g., 17% on MAW of 8 for 𝑅 of 15). Similarly, an
increase in the LRS cell resistance variation results in the even more
accuracy drop as the MAW increases. This proves our point that the
non-ideality of RRAM cells are limiting the potential performance
gain from the increased MAW.

3 UNLOCKINGWORDLINE-LEVEL
PARALLELISM

3.1 Overview
To enable the performance scaling with wordline-level parallelism,
non-ideality of RRAM cells need to be properly addressed. Our
work presents two techniques to mitigate non-ideality of RRAM
cell and enable the RRAM-based neural network accelerators to
exploit wordline-level parallelism with much larger MAW without
notably degrading accuracy. First, Section 3.2 introduces a technique
to efficiently mitigate errors resulting from accumulation of high-
resistance state (HRS) cell currents. Second, motivated from the
fact that each layer in a neural network model has a different level
of tolerance for errors, Section 3.3 presents a mechanism to identify
the proper MAW for each layer with minimal impact on model
accuracy. With these two techniques, our work presents a new way
to scale RRAM-based accelerator performance with a much less
hardware cost than the alternative scaling strategies.

3.2 Input-Aware Current Compensation
Themost natural way to counter the impact of the unwanted current
shift that HRS cells cause is to simply subtract the sum of HRS
cell currents from the resulting bitline current. If 𝑁 wordlines are
activated and 𝐿 among 𝑁 cells are in LRS while 𝐻 cells are in HRS,
the resulting bitline current 𝐼𝐵𝐿 is as follows.

𝐼𝐵𝐿 = 𝐿 · 𝐼𝐿𝑅𝑆 + 𝐻 · 𝐼𝐻𝑅𝑆

For example, in Figure 5(a), 𝑁 , 𝐿, and 𝐻 are 3, 1, and 2, respectively,
so 𝐼𝐵𝐿 is 𝐼𝐿𝑅𝑆 + 2 · 𝐼𝐻𝑅𝑆 . If it is possible to eliminate the second term
from the above equation for 𝐼𝐵𝐿 , identifying 𝐿 from the remaining

Unlocking Wordline-level Parallelism for Fast Inference on RRAM-based DNN Accelerator ICCAD ’20, November 2–5, 2020, Virtual Event, USA

C
u

rre
n

t S
u
b
tra

c
to

r

N·I
HRS

S&H S&H S&H

⋮
⋮

⋮ ⋮ ⋮

⋮

⋮

S&H

Extra BL (all HRS)

L·(I
LRS

- I
HRS

)I
BL

(= L·I
LRS

+ H·I
HRS

)

Column Mux

A
D

C

H

L

H

L

In
p

u
t

P
u

ls
e
s

N = 3, L = 1, H =2

I
BL

= I
LRS

+ 2·I
HRS

(a) (b)

Figure 5: Illustration of the hardware for input-aware cur-
rent compensation scheme

current (i.e., 𝐿 · 𝐼𝐿𝑅𝑆) with ADC is a trivial task assuming no random
current variations. However, subtracting the current 𝐻 · 𝐼𝐻𝑅𝑆 is
a fundamentally infeasible task because 𝐻 is a value that is only
available at the readout. Fortunately, we can rewrite the above
expression as follows.

𝐼𝐵𝐿 = 𝐿 · 𝐼𝐿𝑅𝑆 + 𝐻 · 𝐼𝐻𝑅𝑆

= 𝐿 · 𝐼𝐿𝑅𝑆 + (𝑁 − 𝐿) · 𝐼𝐻𝑅𝑆

= 𝐿(𝐼𝐿𝑅𝑆 − 𝐼𝐻𝑅𝑆) + 𝑁 · 𝐼𝐻𝑅𝑆

From the equation above, it is obvious that subtracting 𝑁 · 𝐼𝐻𝑅𝑆

makes it easy to identify 𝐿 from remaining currents with a conven-
tional ADC, considering that (𝐼𝐿𝑅𝑆−𝐼𝐻𝑅𝑆) is a constant. Subtracting
𝑁 · 𝐼𝐻𝑅𝑆 is possible since 𝑁 is the number of 1s in the input vector
rather than the number of 0s in the output vector (i.e., 𝐻). Below,
we discuss how we efficiently implement the hardware for such
current subtraction and identify 𝐿 with a conventional SAR-ADC.
Step 1: Subtracting 𝑁 · 𝐼𝐻𝑅𝑆 . To dynamically generate the current
𝑁 · 𝐼𝐻𝑅𝑆 , our proposal adds an extra bitline to the crossbar array. All
the cells in this extra bitline are then programmed to HRS.When the
wordline driver activates specific wordlines, the resulting current
for this bitline roughly corresponds to 𝑁 · 𝐼𝐻𝑅𝑆 . Then, we add a
current subtractor before each ADC so that the ADC takes the
subtraction results (i.e., roughly equals 𝐿(𝐼𝐿𝑅𝑆 − 𝐼𝐻𝑅𝑆)) as input.
Figure 5 illustrates the crossbar structure extended for input-aware
current compensation scheme.

One might remember that the original architecture already has
a mechanism to count the activated wordlines (𝑁) to handle signed
arithmetic (Section 2.1), and wonder if we still need them consid-
ering that we can add a new way to count 𝑁 with HRS cells. The
short answer is yes. The newly added HRS-cell-based extra bitline
is not well-suited for obtaining 𝑁 itself. First, the 𝐼𝐻𝑅𝑆 is small and
thus identify 𝑁 from 𝑁 · 𝐼𝐻𝑅𝑆 is challenging. Second, HRS cells
tend to have higher resistance variance than LRS cells. For these
two reasons, we still need a separate LRS-cell-based extra bitline
for counting 𝑁 , which is used to handle signed arithmetic.
Step 2: Obtaining 𝐿withADC. Tomaximize amargin between an
input signal and a reference current, the reference currents should
be a halfway between two adjacent possible input signals. In other
words, the optimal reference currents for 𝐿(𝐼𝐿𝑅𝑆 − 𝐼𝐻𝑅𝑆) would
be 1

2 (𝐼𝐿𝑅𝑆 − 𝐼𝐻𝑅𝑆), 32 (𝐼𝐿𝑅𝑆 − 𝐼𝐻𝑅𝑆), ... , 2
𝑘+1−3
2 (𝐼𝐿𝑅𝑆 − 𝐼𝐻𝑅𝑆) where

𝑘 is ADC resolution. A multi-level sense amplifier-based ADC,
which is widely used by the recent macros for RRAM-based DNN
accelerator [2, 27, 31], usually keeps a separate current generator

for each reference current and thus can produce reference currents
according to the optimal values. However, a cost-effective type of
ADC like a successive approximation register (SAR) ADC uses a
binary weighted DAC for reference generation [7, 17]. The binary
weighted DAC dynamically produces 2𝑛 − 1 reference currents by
combination of 𝑛 binary weighted currents (e.g., producing current
1,2, ... , 7 with current 1,2,4). Even for this type of ADC, an optimized
set of reference currents can be generated with the addition of a
constant current subtractor. Specifically, a current subtractor can
be added to subtract the constant current of 1

2 (𝐼𝐿𝑅𝑆 − 𝐼𝐻𝑅𝑆) from
the generated reference current.
Comparison to Prior Work. A recent prior work IA-REF [2, 3]
also identified the issue of accumulated HRS cell currents and pro-
posed a way to mitigate this. Specifically, IA-REF first counts the
number of activated wordlines (i.e., 𝑁 = wordlines with 1s) in the
digital domain with a digital popcount unit (i.e., adders), and then
set the reference currents for the ADC to the halfway points among
following currents: 𝐼𝐿𝑅𝑆+(𝑁−1)𝐼𝐻𝑅𝑆 , 2𝐼𝐿𝑅𝑆+(𝑁−2)𝐼𝐻𝑅𝑆 , ... , (𝑁−
1)𝐼𝐿𝑅𝑆 + 𝐼𝐻𝑅𝑆 , 𝑁 𝐼𝐿𝑅𝑆

1. For this purpose, IA-REF prepares a set of 𝑁
reference currents for each 𝑁 value, and then pre-programs them to
the separate RRAM array. Once the 𝑁 is determined, IA-REF drives
the first 𝑁 wordlines of this auxiliary RRAM array to retrieve 𝑁
reference currents. While this is effective for further error reduction
on small MAW, the method quickly becomes impractical for larger
MAW that it was not designed for. For example, for MAW of 128,
this method requires roughly 128 × 128 RRAM crossbar array as
well as a wide (128 elements) digital popcount unit.

3.3 Layer-wise MAW Selection
The input-aware current compensation scheme addresses the po-
tential errors resulting from the accumulation of HRS cell currents.
However, random current deviations can still be accumulated and
produce an error for the larger MAW. To achieve further perfor-
mance improvement, we propose to assign different MAW for differ-
ent layers instead of utilizing the same MAW for the whole neural
network model. The intuitions behind the idea is that i) different
layers of the same network exhibits different amount of errors for
the same MAW, and ii) even the same amount of errors on different
layers has a varying impact on the end-to-end model accuracy.

Different layers of the same network induce different amount
of errors for the same MAW because their inputs are different. For
example, some layers are followed by the popular ReLU activation
function which clamps all negative values to zero. For such layers,
the number of 0s in the input tends to be larger than the conven-
tional layer. In that case, even for the same MAW, the actual number
of activated wordlines (i.e., 1s in the inputs) tend to be small because
value zero is represented as eight 0s in its 8-bit representation. We
also empirically verified that the same amount of errors on different
layers has a varying impact on the end-to-end model accuracy. For
example, we find that the very first layer of convolutional neural
network models tends to be much more sensitive to errors. This is

1Technically, IA-REF adopts a custom sensing scheme named distance-racing sensing
scheme. This scheme interprets 𝐼𝐵𝐿 by comparing the distance between 𝐼𝐵𝐿 and the
higher reference current and the distance between 𝐼𝐵𝐿 and the lower reference current.
While the exact implementation is different, the distance-racing sensing scheme and
the conventional sensing scheme are conceptually equivalent, and thus we assumed
the latter for concise explanation.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Y. Park, et al.

natural considering that the first layer is responsible for extracting
key features directly from the input.
Overview.Wepropose a systematic approach to identify the proper
MAW for each layer in the given NN model. Specifically, we enable
the user to provide a target accuracy loss and find the MAW for
each layer which results in less than the target accuracy loss on
the validation set. The process consists of two phases: layer-wise
sensitivity profiling and iterative search to find proper MAW.
Profiling. For each layer, we profile the impact on the end-to-end
model accuracy as the specific layer’s MAW increases. Specifically,
we measure change, not drop, as sometimes accuracy accidentally
increases from errors resulting from the MAW increase. Figure 6(a)
illustrates the profiling process for the first layer of a 4-layer neural
network model. For this purpose, we change the MAW for the first
layer (e.g., 8, 16, 32) while the other layers run in a pure software
mode with no error, and then measure the deviation (labeled "Dev"
in Figure 6(a)) from the ideal end-to-end accuracy (i.e., the accu-
racy for the case where this model runs without any error). Then,
the marginal cost for each MAW is calculated by comparing the
deviation with the immediately previous level. For example, the
cost to increase the MAW of Layer 1 from 16 to 32 is 0.3 (=0.9-0.6).
The cost for the minimum supported MAW (8), which we denote
as base MAW, is not defined.
Iterative Search. Once the profiling for every layer finishes, the
iterative search starts. Starting from the state 0 which is defined as
the tuple of base MAW (i.e., (8, 8, 8, 8) in Figure 6(b)), the search
defines the following states by increasing the MAW of a layer that
has the least marginal cost. For example, Figure 6(b) visualizes how
state 1, 2, 3 are defined. At state 0, all the layers are initialized with
the base MAW (8). Since the marginal cost of increasing the MAW
for the layer 4 is the least among available options (gray-colored
cells), state 1 is defined as (8, 8, 8, 16). The next state (state 2) is then
defined as (8, 8, 8, 32) since the marginal cost for increasing the
MAW for layer 4 is the least among available choices once again.
State 3 is then defined as (8, 16, 8, 32) as the layer 2 now has the
least marginal cost of increasing the MAW. This process continues
and a series of 8 states are defined in this example.

To determine when to stop advancing states, we introduce a
user parameter called target accuracy loss. We move forward as
far as the simulated validation accuracy does not degrade more
than the target accuracy loss from the ideal accuracy (i.e., accuracy
without any error). Examining the validation accuracy for every
state will require a multiple rounds of validations that is identical
to the number of total states. To avoid such a huge computational
cost, we perform a binary search to find the best policy that satisfies
the validation accuracy constraint. Figure 6(c) illustrates how the
binary search reduces the total number of validations.

At the first round, we proceed as many as the half of the total
possible states (i.e., [# of layers] × [# of possible MAW values - 1])
and then perform the validation of the corresponding policy. As
the accuracy drop is less than the target accuracy loss (0.5%), we
move further as much as the half of the remaining states, and reach
state 6. However, at this time, the validation accuracy drops from
the baseline more than the target accuracy loss. Thus, we move
backward to the halfway point between the current state and the
last visited state (State 5 in this example). We repeat the process
until we cannot move anymore. The resulting policy would be the

93.6

92.9

92.6

Acc

SW 8 16 32

(0.1)

(0.6)

(0.9)

Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

Layer 4

Layer 4

Layer 4

No Error: 93.5% Dev Cost

X

(0.5)

(0.3)

32 0.3 0.6 0.4 0.1

16 0.5 0.2 0.3 0.0

8
L1 L2 L3 L4

32 0.3 0.6 0.4 0.1

16 0.5 0.2 0.3

8
L1 L2 L3 L4

32 0.3 0.6 0.4

16 0.5 0.2 0.3

8
L1 L2 L3 L4

32 0.3 0.6 0.4

16 0.5 0.3

8
L1 L2 L3 L4

State 0 (8-8-8-8)

(a)

(b)

Target: 0.5%

4 steps forward

(State 4)

Acc: 93.4% (Pass)

ROUND 1

2 steps forward

(State 6)

Acc: 92.7% (Fail)

ROUND 2

1 step backward

(State 5)

Acc: 93.1% (Pass)

ROUND 3

State 5

(c)

State 1 (8-8-8-16)

State 3 (8-16-8-32)State 2 (8-8-8-32)

Figure 6: Example for MAW selection process on a 4-layer
network. (a) shows the process of the sensitivity profiling of
the layer 1. (b) shows how the iterative search is performed
utilizing profiling results. (c) shows how we determine the
best policy satisfying the validation constraint.

last one that has satisfied the target accuracy loss. In the example,
the search stops at State 5 and outputs its policy as it satisfies the
accuracy constraint. The binary search limits the required rounds
of validation to be the log of the number of the total states.

Note that this policy does not guarantee the exact accuracy loss
in the real test set. It is well known that NN algorithms’ behavior is
slightly different on validation set and the test set, and thus there
is no real way to guarantee the actual accuracy loss on the test set
resulted from our MAW selection policy. Still, if the validation set is
sufficiently representative, it is expected that the similar accuracy
loss will be observed in the test set as well.
Relation between theMAW and ADCResolution. As outlined
in Section 2.2, support for the increased MAW requires an increase
in the ADC resolution. For example, to support the MAW of 128,
ADC resolution needs to be 8-bit so that it can properly support 0-
128 range. However, observations from real neural network model
inputs indicate that it is rare for the resulting bitline currents from
the crossbar array to exceed certain value. This is natural in some
sense. For example, if the uniform distribution is assumed for the
8-bit input vector (activation of the previous layer), about half
of the bits (e.g., 4 out of 8-bit) will be zero. The same may apply
for the 8-bit weights. Since the bitline current accumulates 1 if
and only if both the currently processed bits in the input and the
weight are 1, the chance of the bitline accumulating 1 from a single
wordline activation is roughly 1/4. As a result, for a specific MAW,
the expected value for the ADC outcome is 1/4 of it. In this case,
utilizing a ADC with a single bit less resolution (i.e., the ADC can
convert to [0, MAW/2]) and clipping the signal when it exceeds
the supported range has an negligible impact on the end-to-end
accuracy. Furthermore, we find that it is also a good idea to give
up an ability to detect MAW/2 value for the extra bit reduction. In
summary, we recommend the usage of ADC with (log2𝑀 − 1)-bit
resolution, not (𝑙𝑜𝑔2𝑀 + 1)-bit resolution, where𝑀 represents the
largest among MAWs of all layers. Tightening the ADC resolution
affects not only area and power but also the speedup since ADC
latency, scaling linearly with the resolution, is in the critical path.
Section 4.3 demonstrates the validity of this design choice.

Unlocking Wordline-level Parallelism for Fast Inference on RRAM-based DNN Accelerator ICCAD ’20, November 2–5, 2020, Virtual Event, USA

4 EVALUATION
4.1 Methodology
Workloads. To evaluate the effectiveness of the two proposed
schemes, we conducted experiments on three datasets with different
complexity (CIFAR-10, CIFAR-100 [15], Tiny ImageNet [18]), and
used two CNN models (ResNet-18 [10], VGG-11 [25]). By default,
we used 8-bit for both weight and activation values of the networks.
We have trained the models using floating-point values and fine-
tuned them for fixed-point quantization. For weight quantization,
we clipped the weight values with a fixed threshold for each layer
that minimizes the mean-squared-error between the floating point
and the quantized values [24, 28]. For activation quantization, we
used parameterized clipping activation [5].
Accuracy Simulation. To estimate the end-to-end inference accu-
racy of RRAM-based accelerator, we implemented a custom sim-
ulator faithfully following the methodology of DL-RSIM [19] and
integrated it into the Pytorch [21]. By default, we set the On/Off
ratio of RRAM cell to be 25 [9]. We set the resistance variance for
HRS and LRS resistance as 0.4 and 0.04, respectively [9].
Baseline Architecture. We assume a generic RRAM-based DNN
accelerator which is organized in a hierarchical structure similar
to a well-known prior work ISAAC [23]. Section 2.1 explained the
structure for the computing unit (CU), a basic building block for
the DNN accelerator. In the baseline architecture, 12 CUs comprise
a single processing element (PE) along with various peripherals
such as weight/activation buffers as well as miscellaneous function
units including sigmoid units, pooling units, etc, and there are 336
PEs in total. When measuring the performance, we followed the
mapping strategy based on the inter-layer pipeline of ISAAC [23]
which minimizes the buffer requirement between PEs.

4.2 Input-Aware Current Compensation

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

8 16 32 64 128

Ideal Accuracy w/o Errors Base Input-Aware Current Compensation Scheme

0%

20%

40%

60%

80%

100%

8

1
6

3
2

6
4

1
2
8

A
c
c
u
ra

c
y

MAW size

0%

20%

40%

60%

80%

100%

8

1
6

3
2

6
4

1
2
8

A
c
c
u
ra

c
y

MAW size

0%

20%

40%

60%

80%

100%

8

1
6

3
2

6
4

1
2
8

A
c
c
u
ra

c
y

MAW size

0%

20%

40%

60%

80%

100%

8

1
6

3
2

6
4

1
2
8

A
c
c
u
rc

y

MAW size

0%

20%

40%

60%

80%

100%

8

1
6

3
2

6
4

1
2
8

A
c
c
u
ra

c
y

MAW sizeCIFAR-10

(ResNet)

CIFAR-10

(VGG)

CIFAR-100

(ResNet)

CIFAR-100

(VGG)

Tiny ImageNet

(ResNet)

Figure 7: Impact of input-aware current compensation
scheme on the accuracy across varying MAW (x-axis).

To measure the effectiveness of input-aware current compensa-
tion scheme (in Section 3.2), we change the MAW from 8 to 128 and
run the whole model with the specific MAW, and then compare the
accuracy degradation from the baseline. We increment the ADC
resolution by one every time the MAW gets doubled. Figure 7 shows
the result for this experiment. For all datasets, the accuracy of base-
line begins to noticeably degrade from the MAW of 16 and becomes
unusuable when the MAW is larger than 16. On the other hand,
with our proposed input-aware current compensation scheme, the
accuracy remains fairly high with the increased MAW. Especially
for CIFAR-10, the accuracy is nearly identical to the ideal case even
with the MAW of 128. On CIFAR-100 and Tiny ImageNet, however,
the accuracy continuously decreases although much more gently

Speedup Accuracy (base) Accuracy (ours)

0%

20%

40%

60%

80%

100%

0

2

4

6

8

10

4 5 6 7

S
pe

ed
up

0%

20%

40%

60%

80%

100%

0

2

4

6

8

10

4 5 6 7

0%

20%

40%

60%

80%

100%

0

2

4

6

8

10

4 5 6 7

0%

20%

40%

60%

80%

100%

0

2

4

6

8

10

4 5 6 7
0%

20%

40%

60%

80%

100%

0

2

4

6

8

10

4 5 6 7

A
cc

ur
ac

y

CIFAR-10
(ResNet)

CIFAR-10
(VGG)

CIFAR-100
(ResNet)

CIFAR-100
(VGG)

Tiny ImageNet
(ResNet)

−
0
.7
%

−
0
.2
%

−
0
.6
%

−
0
.5
%

−
0
.1
%

−
0
.2
%

−
0
.4
%

−
0
.3
%

−
1
.2
%

−
1
.0
%

−
0
.8
%

−
1
.0
%

−
1
.0
%

−
0
.7
%

−
0
.7
%

−
1
.0
%

−
0
.4
%

−
0
.1
%

−
0
.1
%

+
0

.1
%

Figure 8: Speedups and accuracy degradation of our pro-
posed scheme (input-aware current compensation + layer-
wise MAW selection) across different workloads. X-axis rep-
resents the ADC resolution.

0

32

64

96

128

M
A

W
 s

iz
e

CIFAR100 Tiny ImageNetCIFAR-100

Figure 9: Selected MAW across layers for CIFAR-100 and
Tiny ImageNet on ResNet-18 Network. 6-bit ADC is used.

compared to the baseline, which demonstrates that the current com-
pensation alone is not sufficient to achieve significant performance
improvements maintaining the accuracy. The MAW can increase
only up to 32 and 16 for CIFAR-100 and Tiny ImageNet which
translates to 3.3× and 1.6× speedup, respectively.

4.3 Input-Aware Current Compensation with
Layer-wise MAW Selection.

Figure 8 shows the performance and accuracy degradation for cases
where both input-aware current compensation scheme and the
layer-wise MAW selection policy are applied. Specifically, we in-
cluded the MAW of 8, 16, 32, 64, and 128 to the search space and set
the target accuracy loss to 1%. Furthermore, the same experiments
were conducted with the different ADC resolutions (4-8 bits) to
observe its impact (see discussion at the end of Section 3.3). As
shown in the figure, our scheme achieves the substantial speedup
across all workloads, especially on the recommended ADC resolu-
tion (𝑙𝑜𝑔2𝑀 − 1 = 6). Such a speedup is all achieved within around
1% accuracy degradation. Note that all bars in the figure achieve
the limited accuracy degradation since our layer-wise MAW selec-
tion policy always limits the accuracy degradation by forgoing the
potential speedup resulting from the larger MAW.

Figure 8 also explores the impact of ADC resolution. The in-
creased ADC resolution reduces the errors from clipping, and can
potentially enable the higher MAW for certain layers. However, at
the same time, it reduces the throughput of all layers because a
larger ADC resolution leads to a longer ADC latency. As discussed
in Section 3.3, the ADC resolution of (𝑙𝑜𝑔2𝑀 − 1 = 6) results in
the best performance in many cases. This is because such a ADC
resolution minimizes the case of accuracy degradation from clip-
ping while also providing the better ADC latency compared to the
full-resolution case (8-bit for MAW = 128).

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Y. Park, et al.

0%

20%

40%

60%

80%

100%

0

2

4

6

8

15 25 35

S
pe

ed
up

On/Off ratio

0%

20%

40%

60%

80%

100%

0

2

4

6

8

15 25 35
On/Off ratio

0%

20%

40%

60%

80%

100%

0

2

4

6

8

15 25 35
On/Off ratio

0%

20%

40%

60%

80%

100%

0

2

4

6

8

15 25 35
On/Off ratio

0%
20%
40%
60%
80%
100%

0

2

4

6

8

15 25 35

A
cc

ur
ac

y

On/Off ratio

−
0.
6%

−
0.
2
%

−
0.
2
%

−
0.
6
%

−
0.
2
%

−
0.
8
%

−
0.
5
%

−
1.
0
%

−
0.
6
%

−
1.
0
%

−
0.
7
%

−
0.
6
%

+
0.

4
%

−
0.
1
%

−
0.
3
%

CIFAR-10
(ResNet)

CIFAR-10
(VGG)

CIFAR-100
(ResNet)

CIFAR-100
(VGG)

Tiny ImageNet
(ResNet)

Speedup Accuracy (base) Accuracy (ours)

Figure 10: Sensitivity to cell On/Off ratio.

0%

20%

40%

60%

80%

100%

0

2

4

6

8

0.02 0.04 0.06

S
pe

ed
up

σ

0%

20%

40%

60%

80%

100%

0

2

4

6

8

0.02 0.04 0.06

σ

0%

20%

40%

60%

80%

100%

0

2

4

6

8

0.02 0.04 0.06

σ

0%

20%

40%

60%

80%

100%

0

2

4

6

8

0.02 0.04 0.06

σ

0%

20%
40%

60%

80%

100%

0

2

4

6

8

0.02 0.04 0.06

A
cc

ur
ac

y

σ

−
0.
4%

−
0.
2
%

−
1.
4
%

−
1.
1
%

−
0.
2
%

−
0.
6
%

−
0.
3
%

−
1.
0
%

−
0.
4
%

−
0.
7
%

−
0.
7
%

−
1.
3
%

+
0.

1
%

−
0.
1
%

−
0.
1
%

CIFAR-10
(ResNet)

CIFAR-10
(VGG)

CIFAR-100
(ResNet)

CIFAR-100
(VGG)

Tiny ImageNet
(ResNet)

Speedup Accuracy (base) Accuracy (ours)

Figure 11: Sensitivity to cell resistance deviation.

For Tiny ImageNet dataset, the result is slightly better for 5-bit
ADC. This is because the MAW of 128 is rarely used to limit the
accuracy degradation. Figure 9 shows the selected MAW across
layers for CIFAR-100 and Tiny ImageNet on ResNet-18. The figure
shows that the MAW of 128 is only selected for 5 layers out of
21 layers. In this case, the choice of 5-bit ADC does not degrade
the accuracy much while providing slightly better speedup for all
layers. On the other hand, the figure shows that the MAW of 128 is
used on many layers for CIFAR-100 dataset.

Note that the result on Figure 8 is much better than the ones
presented in Figure 7. It is easy to see the effectiveness of the
layer-wise MAW selection for CIFAR-100 and Tiny ImageNet as
only limited performance gain (3.3×, 1.6×) has been achieved solely
with the current compensation while Figure 8 shows around 9×,
4× speedup for the same datasets.
Additional Hardware Cost. The performance gain of the two
proposed techniques incurs very small hardware cost. The increase
of area and power of CU when using 6-bit ADC is measured to be
25.3% and 8.7% following the way discussed in Section 2.2. This cost
translates to 8.2% and 5.3% of the chip-level overhead as CUs account
for 37.5% and 62.8% of the total chip area and power respectively,
assuming that non-CU components in the chip follow the area and
power model reported in [23].

4.4 Sensitivity Studies
Sensitivity to Cell On/Off Ratio.We changed On/Off ratio from
the baseline setting (i.e., 25) to 15 and 35. For the On/Off ratio of
15, the baseline MAW was adjusted to 4 from 8, since the MAW 8
resulted in the severe accuracy degradation. The MAW of 16 still
resulted in the severe accuracy degradation even with the On/Off-
ratio = 35, and the baseline MAW was set to 8 for that case. The
Figure 10 shows the experimental result. Generally speaking, our
scheme achieves higher speedup on higher On/Off ratio. When the
On/Off ratio is extremely low, the MAW is severely limited and the
amount of speedup that our scheme can achieve becomes limited as

0%

20%

40%

60%

80%

100%

0

2

4

6

8

8 6 4

0%

20%

40%

60%

80%

100%

0

2

4

6

8

8 6 4

0%

20%

40%

60%

80%

100%

0

2

4

6

8

8 6 4
0%
20%
40%
60%
80%
100%

0

2

4

6

8

8 6 4

A
cc

ur
ac

y

−
0.
2
%

−
0.
6
%

+
0.

6
%

−
1.
0
%

−
0.
9
%

−
1.
2
%

−
0.
7
%

−
1.
6
%

−
0.
7
%

−
0.
1
%

+
0.

1
%

−
0.
2
%

0%

20%

40%

60%

80%

100%

0

2

4

6

8

8 6 4

S
pe

ed
up

−
0.
2
%

−
0.
3
%

−
0.
8
%

Speedup Accuracy (base) Accuracy (ours)

CIFAR-10
(ResNet)

CIFAR-10
(VGG)

CIFAR-100
(ResNet)

CIFAR-100
(VGG)

Tiny ImageNet
(ResNet)

Figure 12: Sensitivity to quantization levels. The x-axis rep-
resents the quantized bitwidth for both activations and
weights. We keep activation values of the first layer as 8-bit
regardless of the quantization level following the practice of
many other studies on DNN quantization[5, 14, 36].

well. On the other hand, a higher On/Off ratio lets our layer-wise
MAW selection scheme aggressively utilize a large MAW.
Sensitivity to Cell Resistance Deviation. We changed 𝜎 from
the baseline setting (i.e., 0.04) to 0.02 and 0.06, and then observe the
impact of such changes on the speedup. Figure 11 shows that the
speedup tends to decrease as 𝜎 is increased. This is natural since
the larger 𝜎 indicates the larger chance of accumulated errors from
cell resistance deviation exceeding the ADC sensing margin. Con-
sequently, our layer-wise MAW selection policy ends up choosing
the more conservative MAW, which results in the less speedup. Still,
our scheme shows over 3× speedup across all evaluated cases.
Sensitivity to Quantization Levels. For the efficient computa-
tion, it is common to perform further quantization on neural net-
work models. Figure 12 shows that our technique provides substan-
tial speedup regardless of the quantization levels.

5 CONCLUSION
We propose two key techniques that enables the RRAM-based ac-
celerators to exploit further wordline-level parallelism and improve
the performance at a low cost. First, we reduce a large part of the
bitline current readout errors with a cost-effective error mitigation
mechanism called input-aware current compensation that alleviates
the accumulation of the non-zero HRS cell currents. Second we
propose a layer-wise MAW selection scheme exploiting the fact
that different layer has different resilience to the increase of the
MAW. We introduce an algorithm to find a proper MAW for each
layer under an accuracy constraint by profiling each layer’s sen-
sitivity to the end-to-end accuracy. Our evaluation demonstrates
that, when input-aware current compensation and layer-wise MAW
selection are both applied, we achieve 3 − 10× speedup with less
than 1% accuracy degradation across three datasets. This benefit
comes with a small cost of only 8.2% and 5.3% increase in area and
power consumption, respectively, at the chip level.

ACKNOWLEDGMENTS
This research was supported by Samsung Electronics and also
by Nano-Material Technology Development Program through Na-
tional Research Foundation of Korea (NRF) funded by the Ministry
of Science, ICT and Future Planning (2016M3A7B4909668). The
EDA tool was supported by the IC Design Education Center (IDEC),
Korea. Jae W. Lee is the corresponding author.

Unlocking Wordline-level Parallelism for Fast Inference on RRAM-based DNN Accelerator ICCAD ’20, November 2–5, 2020, Virtual Event, USA

REFERENCES
[1] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin

Foltin, R. Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul Stra-
chan, Kaushik Roy, and Dejan S. Milojicic. 2019. PUMA: A Programmable Ultra-
Efficient Memristor-Based Accelerator for Machine Learning Inference. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’19). Association for
Computing Machinery, 715–731.

[2] W. Chen, K. Li, W. Lin, K. Hsu, P. Li, C. Yang, C. Xue, E. Yang, Y. Chen, Y. Chang,
T. Hsu, Y. King, C. Lin, R. Liu, C. Hsieh, K. Tang, and M. Chang. 2018. A 65nm
1Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns multiply-
and-accumulate for binary DNN AI edge processors. In 2018 IEEE International
Solid - State Circuits Conference - (ISSCC). 494–496.

[3] Wei-Hao Chen, Chunmeng Dou, Kai-Xiang Li, Wei-Yu Lin, Pin-Yi Li, Jian-Hao
Huang, Jing-Hong Wang, Wei-Chen Wei, Cheng-Xin Xue, Yen-Cheng Chiu,
Frederick Chen, Chorng-Jung Lin, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong
Tang, J. Yang, Mon-Shu Ho, and Meng-Fan Chang. 2019. CMOS-integrated
memristive non-volatile computing-in-memory for AI edge processors. Nature
Electronics 2 (08 2019). https://doi.org/10.1038/s41928-019-0288-0

[4] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie. 2016. PRIME: A
Novel Processing-in-Memory Architecture for Neural Network Computation in
ReRAM-Based Main Memory. In 2016 ACM/IEEE 43rd Annual International Sym-
posium on Computer Architecture (ISCA). Association for Computing Machinery,
27–39.

[5] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vi-
jayalakshmi Srinivasan, and Kailash Gopalakrishnan. 2018. PACT: Parameterized
Clipping Activation for Quantized Neural Networks.

[6] Teyuh Chou, Wei Tang, Jacob Botimer, and Zhengya Zhang. 2019. CASCADE:
Connecting RRAMs to Extend Analog Dataflow In An End-To-End In-Memory
Processing Paradigm. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’52). Association for Computing Ma-
chinery, 114–125.

[7] Chun-Cheng Liu, Yi-Ting Huang, Guan-Ying Huang, Soon-Jyh Chang, Chung-
Ming Huang, and Chih-Haur Huang. 2009. A 6-bit 220-MS/s time-interleaving
SAR ADC in 0.18-µm digital CMOS process. In 2009 International Symposium on
VLSI Design, Automation and Test. 215–218.

[8] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 248–255.

[9] Daniele Garbin, E. Vianello, Olivier Bichler, Quentin Rafhay, Christian Gamrat,
Gerard Ghibaudo, Barbara DeSalvo, and Luca Perniola. 2015. HfO₂-
Based OxRAM Devices as Synapses for Convolutional Neural Networks. Electron
Devices, IEEE Transactions on 62 (2015).

[10] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770–778.

[11] C. Ho, S. Chang, C. Huang, Y. Chuang, S. Lim, M. Hsieh, S. Chang, and H. Liao.
2017. Integrated HfO2-RRAM to achieve highly reliable, greener, faster, cost-
effective, and scaled devices. In 2017 IEEE International Electron Devices Meeting
(IEDM). IEEE, 2.6.1–2.6.4.

[12] K.C. Hsu, Feng-Min Lee, Y.Y. Lin, E.K. Lai, J.Y. Wu, D.Y. Lee, Min-Hee Lee, H.-L
Lung, K.Y. Hsieh, and C.Y. Lu. 2015. A Study of Array Resistance Distribution
and a Novel Operation Algorithm for WOx ReRAM Memory. In Proceedings of
International Conference on Solid State Devices and Materials.

[13] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge, J. J.
Yang, and R. S. Williams. 2016. Dot-product engine for neuromorphic computing:
Programming 1T1M crossbar to accelerate matrix-vector multiplication. In 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[14] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized Neural Networks: Training Neural Networks with
Low Precision Weights and Activations. J. Mach. Learn. Res. 18, 1 (Jan. 2017),
6869–6898.

[15] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images.

[16] Lukas Kull, Thomas Toifl, Martin L. Schmatz, Pier Andrea Francese, Christian
Menolfi, Matthias Braendli, Marcel A. Kossel, Thomas Morf, Toke Meyer An-
dersen, and Yusuf Leblebici. 2013. A 3.1 mW 8b 1.2 GS/s Single-Channel Asyn-
chronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm
Digital SOI CMOS. IEEE Journal of Solid-State Circuits 48 (2013), 3049–3058.

[17] Lukas Kull, Thomas Toifl, Martin L. Schmatz, Pier Andrea Francese, Christian
Menolfi, Matthias Braendli, Marcel A. Kossel, Thomas Morf, Toke Meyer An-
dersen, and Yusuf Leblebici. 2013. A 3.1 mW 8b 1.2 GS/s Single-Channel Asyn-
chronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm
Digital SOI CMOS. IEEE Journal of Solid-State Circuits 48 (2013), 3049–3058.

[18] Ya Le and Xuan Yang. 2015. Tiny ImageNet Visual Recognition Challenge. https:
//tiny-imagenet.herokuapp.com/.

[19] M. Lin, H. Cheng, W. Lin, T. Yang, I. Tseng, C. Yang, H. Hu, H. Chang, H. Li,
and M. Chang. 2018. DL-RSIM: A Simulation Framework to Enable Reliable
ReRAM-based Accelerators for Deep Learning. In 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 1–8.

[20] Dilip Maiti, Sudipto Debnath, Sk Masum Nawaz, Bapi Dey, Enakhi Dinda, Dipan-
wita Roy, Sudipta Ray, A. Mallik, and Syed Arshad Hussain. 2017. Composition-
dependent nanoelectronics of amido-phenazines: non-volatile RRAM andWORM
memory devices. Scientific Reports 7 (12 2017). https://doi.org/10.1038/s41598-
017-13754-w

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems. Curran Associates,
Inc.

[22] M. Saberi, R. Lotfi, K. Mafinezhad, and W. A. Serdijn. 2011. Analysis of Power
Consumption and Linearity in Capacitive Digital-to-Analog Converters Used in
Successive Approximation ADCs. IEEE Transactions on Circuits and Systems I:
Regular Papers 58, 8 (2011), 1736–1748.

[23] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar. 2016. ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA). Association
for Computing Machinery, 14–26.

[24] S. Shin, K. Hwang, and W. Sung. 2016. Fixed-point performance analysis of
recurrent neural networks. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 976–980.

[25] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference on Learning
Representations.

[26] L. Song, X. Qian, H. Li, and Y. Chen. 2017. PipeLayer: A Pipelined ReRAM-Based
Accelerator for Deep Learning. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 541–552.

[27] F. Su, W. Chen, L. Xia, C. Lo, T. Tang, Z. Wang, K. Hsu, M. Cheng, J. Li, Y. Xie, Y.
Wang, M. Chang, H. Yang, and Y. Liu. 2017. A 462GOPs/J RRAM-based nonvolatile
intelligent processor for energy harvesting IoE system featuring nonvolatile logics
and processing-in-memory. In 2017 Symposium on VLSI Technology. T260–T261.

[28] Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. 2015. Resiliency of Deep
Neural Networks under Quantization. ArXiv abs/1511.06488 (2015).

[29] Yi-Hsin Ting, Jui-Yuan Chen, Chun-Wei Huang, Ting-Kai Huang, Cheng-Yu
Hsieh, and Wen-Wei Wu. 2017. Observation of Resistive Switching Behavior in
Crossbar Core–Shell Ni/NiO Nanowires Memristor. Small 14 (12 2017). https:
//doi.org/10.1002/smll.201703153

[30] Hong Wang and Xiaobing Yan. 2019. Overview of Resistive Random Access
Memory (RRAM): Materials, Filament Mechanisms, Performance Optimization,
and Prospects. physica status solidi (RRL) – Rapid Research Letters 13, 9 (2019),
1900073. https://doi.org/10.1002/pssr.201900073

[31] C. Xue, W. Chen, J. Liu, J. Li, W. Lin, W. Lin, J. Wang, W. Wei, T. Chang, T.
Chang, T. Huang, H. Kao, S. Wei, Y. Chiu, C. Lee, C. Lo, Y. King, C. Lin, R. Liu, C.
Hsieh, K. Tang, and M. Chang. 2019. 24.1 A 1Mb Multibit ReRAM Computing-
In-Memory Macro with 14.6ns Parallel MAC Computing Time for CNN Based
AI Edge Processors. In 2019 IEEE International Solid- State Circuits Conference -
(ISSCC). 388–390.

[32] C. Xue, W. Chen, J. Liu, J. Li, W. Lin, W. Lin, J. Wang, W. Wei, T. Huang, T. Chang,
T. Chang, H. Kao, Y. Chiu, C. Lee, Y. King, C. Lin, R. Liu, C. Hsieh, K. Tang, and
M. Chang. 2020. Embedded 1-Mb ReRAM-Based Computing-in- Memory Macro
With Multibit Input and Weight for CNN-Based AI Edge Processors. IEEE Journal
of Solid-State Circuits 55, 1 (2020), 203–215.

[33] C. Xue, T. Huang, J. Liu, T. Chang, H. Kao, J. Wang, T. Liu, S. Wei, S. Huang, W.
Wei, Y. Chen, T. Hsu, Y. Chen, Y. Lo, T. Wen, C. Lo, R. Liu, C. Hsieh, K. Tang, and
M. Chang. 2020. 15.4 A 22nm 2Mb ReRAM Compute-in-Memory Macro with
121-28TOPS/W for Multibit MAC Computing for Tiny AI Edge Devices. In 2020
IEEE International Solid- State Circuits Conference - (ISSCC). 244–246.

[34] Tzu-Hsien Yang, Hsiang-Yun Cheng, Chia-Lin Yang, I-Ching Tseng, Han-Wen
Hu, Hung-Sheng Chang, and Hsiang-Pang Li. 2019. Sparse ReRAM Engine: Joint
Exploration of Activation and Weight Sparsity in Compressed Neural Networks.
In Proceedings of the 46th International Symposium on Computer Architecture.
Association for Computing Machinery, 236–249.

[35] Shihui Yin, Xiaoyu Sun, Shimeng Yu, and Jae sun Seo. 2019. High-Throughput
In-Memory Computing for Binary Deep Neural Networks with Monolithically
Integrated RRAM and 90nm CMOS. ArXiv abs/1909.07514 (2019).

[36] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou.
2016. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with
Low Bitwidth Gradients. ArXiv abs/1606.06160 (2016).

https://doi.org/10.1038/s41928-019-0288-0
https://tiny-imagenet.herokuapp.com/
https://tiny-imagenet.herokuapp.com/
https://doi.org/10.1038/s41598-017-13754-w
https://doi.org/10.1038/s41598-017-13754-w
https://doi.org/10.1002/smll.201703153
https://doi.org/10.1002/smll.201703153
https://doi.org/10.1002/pssr.201900073

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 RRAM-based Matrix Multiplication Accelerator
	2.2 RRAM Accelerator Performance Scaling
	2.3 Challenges in Exploiting Wordline-level Parallelism

	3 Unlocking Wordline-level Parallelism
	3.1 Overview
	3.2 Input-Aware Current Compensation
	3.3 Layer-wise MAW Selection

	4 Evaluation
	4.1 Methodology
	4.2 Input-Aware Current Compensation
	4.3 Input-Aware Current Compensation with Layer-wise MAW Selection.
	4.4 Sensitivity Studies

	5 Conclusion
	Acknowledgments
	References

