
9

Efficient Data Supply for Parallel Heterogeneous

Architectures

TAE JUN HAM, Seoul National University

JUAN L. ARAGÓN, University of Murcia

MARGARET MARTONOSI, Princeton University

Decoupling techniques have been proposed to reduce the amount of memory latency exposed to high-

performance accelerators as they fetch data. Although decoupled access-execute (DAE) and more recent de-

coupled data supply approaches offer promising single-threaded performance improvements, little work has

considered how to extend them into parallel scenarios. This article explores the opportunities and challenges

of designing parallel, high-performance, resource-efficient decoupled data supply systems. We propose Mer-

cury, a parallel decoupled data supply system that utilizes thread-level parallelism for high-throughput data

supply with good portability attributes. Additionally, we introduce some microarchitectural improvements

for data supply units to efficiently handle long-latency indirect loads.

CCS Concepts: • Computer systems organization → Heterogeneous (hybrid) systems; Parallel archi-

tectures;

Additional Key Words and Phrases: Heterogeneous architecture, decoupled architecture, data access opti-

mization

ACM Reference format:

Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2019. Efficient Data Supply for Parallel Heterogeneous

Architectures. ACM Trans. Archit. Code Optim. 16, 2, Article 9 (April 2019), 23 pages.

https://doi.org/10.1145/3310332

1 INTRODUCTION

In response to both application trends fueling increasing compute capability demands and the

end of Moore/Dennard technology scaling, specialized accelerators have emerged as an impor-

tant alternative to conventional cores. Although specialized accelerators show great potential in

improving compute performance and performance-per-watt, reaching their full potential still re-

quires overcoming the challenge of keeping them supplied with data.
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Challenges in supplying data from memory to compute elements have been present and grow-

ing for more than three decades now—the so-called memory latency wall [53]. These challenges

become even more difficult in the era of specialized accelerators. The success of specialized ac-

celerators at speeding up particular problems (e.g., encryption, graph analytics, image analysis)

in turn makes memory latency look—from a relative perspective—even larger. Accelerators widen

the gap between the computation capability and data accesses, making the memory wall more se-

vere. Without successful solutions to this data supply problem, accelerators will not reach their

performance potential.

To achieve the goal of minimizing and tolerating memory latency, current specialized accel-

erator designs usually place an additional burden on programmers. For example, programmers

are asked to manually partition data to a size that fits in a particular scratchpad memory while

scheduling data transfer in a way that minimizes the exposed memory latency. Moreover, such

optimization is often tied to a specific configuration (e.g., scratchpad memory size, port count), so

each configuration change from one implementation to another requires rewriting the optimized

communication code. Thus, the question of how to efficiently feed the increasing number of fine-

grain accelerators without burdening programmers is a major problem that remains unsolved.

In part to address memory latency concerns, the emergence of specialized hardware accelera-

tors has led to a resurgence of interest in decoupled approaches. Drawing from the early decou-

pled access-execute (DAE) approach [44, 45], recent works evolve and adapt such ideas for modern

processors [8, 15, 16, 22, 25, 37]. Both the original DAE proposal and more recent decoupling ap-

proaches seek to mitigate the performance impact of memory latency by decoupling the memory

access operations from the compute operations that subsequently operate on those values. Instead

of relying on manual programmer effort, these approaches can use compiler support to automat-

ically generate separate code slices for the access portion (i.e., data supply) of the application and

for the execute portion (i.e., compute). Compared to the generic CPU used for access in the original

DAE, recent decoupled approaches specialize and optimize the decoupled data supplier (DDS) unit

specifically to minimize the memory latency exposed to the compute unit (CU).

Until now, most works on decoupled data supply systems have primarily focused on them in

single-threaded contexts: a single DDS unit and a single CU operating as a pair. This one-to-one

pairing offers single-threaded speedup, but with today’s workloads, we seek to support larger

amounts of on-chip parallelism. This work explores the opportunities and challenges of designing

an efficient, high-performance decoupled data supply system for parallel configurations where

one or more DDS units supply in parallel to multiple CUs. Such approaches allow decoupled data

supply paradigms to leverage larger amounts of on-chip parallelism, to offer greater speedups. In

the process, we also show that they allow for better resource sharing that can reduce hardware

overheads while maintaining speedup.

The key contributions of this article are the following:

• We propose Mercury, a parallel, decoupled data supply system that extends high-

throughput decoupled data supply techniques to parallel environments where thread-level

parallelism (TLP) offers high performance and efficient use of resources. In many cases,

this allows DDS speedups to be multiplicative on top of conventional parallel speedups. We

show that the best parallel DDS designs are often not simple replications of individual DDS

approaches.

• The Mercury-N approach operates as a set of N individual DDS units paired with N indi-

vidual CUs. This scalable design offers an average 3.7x speedup for the evaluated workloads

over a conventional CMP.

• The Mercury-Shared approach utilizes a shared DDS unit leveraging simultaneous multi-

threading (SMT) techniques to drive multiple CUs. This approach has significant advantages
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Fig. 1. Generic decoupled data supply and compute system. Details vary across implementations [8, 15, 22,
37].

in terms of resource sharing. Mercury-Shared offers a comparable average speedup (3.5x

on multithreaded workloads and 2.9x for multiprogrammed ones) over a CMP yet using

2.5x less area than Mercury-N.

• In addition to gains through parallelism, we further extend the DDS microarchitecture by

presenting an optimization that enables the DDS to tolerate the effect of indirect loads. Such

loads have a high potential to limit the system performance and are very common on ap-

plications processing graphs or sparse matrices. For workloads with heavy use of indirect

loads, Mercury achieves 61% to 83% additional speedup.

2 BACKGROUND

Decoupled access-execute. The DAE architecture was originally envisioned as a lower-

complexity alternative to out-of-order processors with the goal of reducing or better tolerating

memory latency [44, 45]. In DAE approaches, a program code is sliced into an access instruc-

tion stream and an execute instruction stream to improve memory latency tolerance by more

efficiently overlapping data accesses with computation. DAE speedups hinge on ensuring that the

access slice can run sufficiently ahead of the execute slice. DAE approaches have high potential to

outperform other data prefetching approaches, particularly due to the effectiveness of their looka-

head approach for hard-to-predict access patterns. Early DAE approaches, however, fell short of

their full performance potential in the case of both (a) loss of decoupling events (LoD as termed in

other works [2, 11, 49]), basically due to dependencies, that limit the runahead distance between

the access and execute threads, and (b) lack of re-order buffer (ROB) space resulting in limited

instruction-level parallelism (ILP) opportunities whenever a long-latency load was blocking the

head of the ROB (in a similar way as for conventional out-of-order (OoO) cores).

Decoupled data supply. One key aspect that differentiates DAE from many other prefetch

techniques is that DAE is not speculative. In other words, its access unit (data supplier) supplies

all data its execution unit (CU) needs. Based on this advantage, more recent work—expanding

on the key intuitions of DAE—has proposed decoupled data supply system designs feeding a

diverse set of CUs including accelerators [8, 15, 22, 37]. Figure 1 shows a general decoupled data

supply and compute system, although different proposals vary in their specific hardware and

compiler support. In these works, a DDS unit is utilized to supply data for a CU with limited

latency tolerance, such as an application-specific accelerator, a programmable accelerator, or a

conventional out-of-order core. A DDS supplies data to a designated storage near the CU (e.g.,

scratchpad memory, hardware queue, content-addressable memory (CAM)) ahead of time, which

allows the CU to retrieve data with a very low access latency. There are several different design
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philosophies embodied in different DDS proposals. For example, Ho et al. [22] utilize a custom

ISA and programming model to design a programmable DDS unit that performs as well as an

out-of-order core data supplier for better energy efficiency. Another approach taken in Chen and

Suh [8] is to design a custom DDS unit for each compute accelerator, which also results in an

energy-efficient design. DeSC [15] takes a third approach, as explained next.

DeSC system. DeSC [15] utilizes a specialized out-of-order core as a DDS unit. Starting from a

conventional out-of-order core, DeSC removes unneeded functionality and then specializes the

core so that it can work as a very effective data supplier unit achieving much higher memory-

level parallelism (MLP) and instruction-level parallelism (ILP). In particular, DeSC utilizes special

instructions such as PRODUCE for its supplier to fill a data buffer from where the CU will later re-

trieve data. DeSC’s supply side can work with minimal modification with various types of compute

sides (e.g., CPUs, accelerators). For example, if the compute side is a CPU, the conventional mem-

ory instructions (i.e., LOAD, STORE) are replaced with instructions that in turn access the DeSC data

buffer (i.e., CONSUME, STORE_VAL). However, if the CU is a custom accelerator, the memory access

units should be modified to access the DeSC data buffer instead of main memory or scratchpad

memory. DeSC facilitates this process with a LLVM-based compiler that utilizes program slicing

(specifically, backward slicing) [52] and other techniques to split the original code into the access

(supply) and execute (compute) streams. With this compiler, the software for both the supplier

and the compute sides can be automatically generated without programmer intervention. If the

CU being fed is intended to be a custom accelerator, the compiler’s auto-generated execute slice

can help to automate (with high-level synthesis tools) or ease the custom design process of the

accelerator hardware that serves as a DeSC-compatible CU.

3 A PARALLEL DECOUPLED DATA SUPPLY SYSTEM

3.1 Challenge in Balancing the DDS and the CU

One of the key factors for a decoupled architecture to perform efficiently is to properly balance

the data supply rate with the data consumption rate. Otherwise, one part of the system will end up

waiting for the other to supply/consume data items. The data supply rate is defined as the number

of data items a DDS can supply to the data buffer per unit time, which mainly depends on both

the effectiveness of the DDS hardware and the application characteristics. For example, a powerful

data supplier (e.g., implementing effective structures to exploit more ILP, higher frequency, larger

L1 cache) can achieve a higher data supply rate than a weaker DDS without such advantages.

In addition, application characteristics such as an easy-to-utilize ILP/MLP, high data locality, or

simple (direct) address calculations let the DDS achieve a higher data supply rate. Similarly, the data

consumption rate—defined as the number of data items consumed from the data buffer per unit

time—is determined by the effectiveness of the CU hardware and the application characteristics.

Having a more effective hardware (e.g., ability to exploit ILP, a large number of ALUs, specialized

functional units) and running applications with certain characteristics (i.e., easy-to-utilize ILP, low

computation-to-data-access ratio) results in a higher data consumption rate.

Summarizing, a decoupled architecture is a classical producer-consumer design. When a power-

ful CU (i.e., the consumer) is paired with a weak DDS unit (i.e., the producer), the former frequently

stalls waiting for data to be supplied by the DDS, killing any potential benefit from decoupling (as

shown in Figure 2(a)). The straightforward solution is to overprovision the DDS side to increase its

data supply capability to avoid it being the bottleneck of the system. However, when a powerful

and large DDS unit is paired with a CU that does not consume data so often, the DDS unit will

stay idle most of the time waiting for the data buffer to have free space to supply new data. This

will lead to an underutilization of the DDS supply capability (as illustrated in Figure 2(b)).
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Fig. 2. How the use of multiple, finer-grain DDS unit and CU avoids the capability underutilization issue.

Fig. 3. How TLP enables higher performance with multiple smaller DDS units and CUs.

A natural solution to avoid the capability underutilization issue is to fragment the units follow-

ing a finer-grain approach. By using multiple (but smaller) DDS units and CUs instead of single

ones with a larger amount of resources, it is possible to avoid the underutilization of resources. As

shown in Figure 2(c) and (d), underutilized original resources can now be used by other DDS units

or CUs. Still, this finer-grain pairing has two main limitations. First, a single small DDS and a small

CU pair naturally achieves lower performance compared to the pairing of large DDS unit and large

CU. Second, a finer-grain DDS and CU pairing still can suffer from capability underutilization at

either side (albeit to a lesser degree when compared to Figure 2(a) and (b)). The proposed Mercury

systems aim to address these limitations through the use of TLP. The next section introduces two

different Mercury configurations.

3.2 Overview of Mercury Systems

Mercury-N: A replicated DDS approach using TLP for better performance. To address

the aforementioned limitations, this article first proposes a parallel decoupled data supply system

named Mercury-N. Mercury-N employs N pairs of DDS units and CUs connected in a one-to-

one fashion. Instead of utilizing a single large DDS unit paired with a single CU (as in Figure 3(a)),

Mercury-N follows a fine-grain approach by using multiple but smaller DDS units and CUs (as

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 9. Publication date: April 2019.
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Fig. 4. How a shared DDS further avoids capability underutilization by sharing supplier capability.

in Figure 3(b)). Although the mismatch between the data supply rate and data consumption rate

can still happen in this configuration, its degree is naturally much more limited because both DDS

units and CUs are smaller compared to the case where a large, powerful DDS is paired with a weak

CU (or contrarily, a large CU is paired with a small DDS). When high performance is demanded for

a parallel (multithreaded) application, Mercury-N utilizes multiple pairs of DDS units and CUs,

each pair running a thread of the application. However, when there are multiple programs to run

(multiprogrammed workload), each pair of DDS units and CUs can run a different one.

TLP exploitation is not straightforward in all DDS implementations. For example, for a cus-

tom DDS unit design (e.g., those proposed in other works [8, 22, 37]) to fully support TLP, a

substantial extension is needed to their programming frameworks, compilers, and hardware. How-

ever, designs like DeSC can naturally support TLP because they build on top of a conventional

out-of-order core with full support for TLP. A DeSC-based DDS unit can utilize both existing pro-

gramming frameworks (e.g., Pthreads, OpenMP, C++ Threads) and the existing hardware support

for synchronization required for TLP. For this reason, Mercury builds on top of a DeSC-based

supply unit to implement a parallel decoupled data supply system. Additionally, note that the CUs

in Mercury do not need any explicit support for parallelism either since all memory accesses and

synchronization happen only on the DDS side.

Mercury-Shared: A shared DDS approach for better resource utilization. Although the

Mercury-N configuration is effective, it can still suffer from the capability underutilization issue

when there is a mismatch between the data supply rate and the data consumption rate, as shown

in Figure 4(a). In this example, there are four different applications (App0 to App3) running on four

CUs, each having different data consumption rates, as illustrated by their different widths. Each CU

is paired with a different DDS, all designed to have the same data supply rate, as illustrated by their

equal width. In particular, for App1 and App3, the supply rate of their respective DDS units exceeds

the consumption rate of the respective CUs, and thus both DDS units become underutilized. For

App2, however, the CU’s consumption rate is higher than its peer DDS supply rate, and so the CU

becomes underutilized. Finally, for App0, the supply and consumption rate match, and thus there

is no underutilization.

Mercury-Shared is a system consisting of a single big DDS and multiple CUs (Figure 4(b)).

Unlike a single pair DeSC or a replicated Mercury-N configuration, Mercury-Shared breaks the

convention of the one-to-one pairing between a DDS unit and a CU. Instead, a single Mercury-

Shared DDS unit supplies data for multiple CUs by adopting an SMT approach. With an SMT-

based design, the Mercury-Shared DDS unit runs multiple access threads simultaneously, and

each of those threads interacts with a different CU in the system. The threads running on the

shared DDS can be part of a single multithreaded application or be individual applications.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 9. Publication date: April 2019.
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The key benefit of a shared DDS design is that it allows for a more efficient use of resources,

particularly in the case where each thread has different supply/compute demand needs. For exam-

ple, a shared DDS unit design allows resources not utilized for supplying data to one application

(e.g., App1, App3 in Figure 4) to be dynamically used for supplying data to another application

with higher data supply demands (e.g., App2 in Figure 4). There are two different ways to utilize

the Mercury-Shared architecture. First, a shared DDS unit can be configured to have the same

amount of resources as multiple DDS units. In such a scenario, Mercury-Shared can achieve bet-

ter overall throughput compared to Mercury-N by letting a particular data supply thread (i.e.,

App2 in Figure 4(b)) utilize more resources within the DDS if the CU executing App2 has a higher

data demand need. Second, a shared DDS can be configured to have fewer resources compared to

multiple DDS units. In such a case, Mercury-Shared can improve or maintain the performance

of Mercury-N while using fewer resources. Overall, Mercury-Shared is capable of dynamically

tailoring data supply rates to the needs of multiple CUs. Section 3.3 further explains the Mercury-

Shared design.

3.3 Designing a Shared DDS

There are various possible shared DDS unit designs based on an SMT approach. Our work partic-

ularly focuses on a shared DDS unit that shares two key resources in out-of-order cores, namely,

the instruction window (IW) and the instruction bandwidth (e.g., fetch/decode/issue bandwidth).

It is important to note that in a traditional SMT design, the sharing of such resources might easily

result in resource contention leading to performance degradation. However, the situation is differ-

ent on a decoupled system. This section explains how the unique nature of the access threads that

run on the shared DDS allows the effective sharing of resources with substantially less contention

compared to the conventional (nondecoupled) SMT scenario. Additionally, it explains how sharing

memory system resources brings even further benefits.

Sharing the instruction BW. In a nondecoupled SMT sharing the instruction BW (and ALUs)

is quite a common bottleneck. For example, if four threads are running on a four-way SMT core

that can process up to four instructions per cycle, each thread, on average, can process a single

instruction per cycle. Although there are communication-intensive workloads whose IPC does

not exceed 1, many compute-intensive workloads often reach a higher IPC when provided with

enough resources. If such workloads are run on this SMT core, the fetch/decode/issue BW will

work as a bottleneck, degrading overall performance.

However, the situation is different in a decoupled scenario. A shared DDS unit runs sliced access

(supply) threads that are in charge of calculating addresses, accessing data from/to the memory

and supplying the data to the data buffer. Naturally, due to its frequent data accesses, a decoupled

access thread often has lower IPC compared to a nondecoupled code or the execute (compute)

thread. Furthermore, note also that decoupling reduces the number of instructions to be executed

on the DDS (since computation instructions are offloaded to the CU), and thus a decoupled ac-

cess thread requires a lower IPC to achieve the same performance compared to the nondecoupled

(original) thread. Therefore, given that access threads’ IPC is relatively low, even though multiple

of such low-IPC threads share the instruction bandwidth, overall throughput degradation can be

minimal or even nonexistent. Still, there are cases where sharing the instruction BW can work as

a bottleneck. To minimize the negative impact in such cases, we introduce a fetch prioritization

policy that further minimizes the negative impact of instruction bandwidth sharing.

Decoupling-aware fetch policy. In SMT cores, the fetch policy dictates how resources are al-

located to different threads. If a fetch policy favors one thread, it will utilize the fetch bandwidth

for the cycle, leading to more IW usage for that thread. The most commonly used fetch policy is
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ICOUNT [50], which favors threads with the least number of instructions in the decode, rename, and

IW. This policy is based on the intuition that providing more resources to underutilized threads

brings overall efficiency. However, this simple intuition does not always hold true in DAE-based

architectures where the system performance is not solely dictated by the capability of the DDS

unit. In fact, increasing the data supply rate further does not improve performance once it reaches

the paired CU’s consumption rate.

In a scenario where the data supply rate exceeds the data consumption rate, the access thread

will frequently stall because the corresponding data buffer is full. However, a conventional policy

like ICOUNTwill identify this thread as an underutilized thread (since it often has a very low number

of instructions in decode, rename, and IW due to the frequent stalls) and will prioritize it. We

propose a simple yet effective variation of the ICOUNT policy that takes the decoupling scenario

into account. Our decoupling-aware fetch policy simply inspects the current occupancy of the data

buffer to estimate the decoupling distance. If the current occupancy exceeds a certain threshold

(e.g., 75% of the queue size), it indicates that the data consumption rate is likely to be lower than the

data supply rate, and thus we assign this thread a low priority. Otherwise, if the current occupancy

is below a certain threshold (e.g., 25% of the queue size), this thread will soon need more data, and

thus we assign the thread a high priority. Otherwise, the thread is categorized as normal priority.

Then, for every cycle, the fetch thread selection logic selects the thread with the highest priority.

If the selected thread does not have any instruction to fetch, another thread is given the chance.

If there are multiple threads in the same priority class, the normal ICOUNT policy is used. This

approach preserves the benefits of ICOUNT while preventing it from prioritizing the wrong threads.

Sharing the IW. The IW is one of the essential resources in an OoO core with a large impact

on performance. Thus, sharing it can result in significant performance degradation. For example,

when four threads share the same IW, this decreases the effective IW size for each thread to one-

fourth. Furthermore, it is also possible for a single thread to clog the IW, leaving even less effective

IW size for other threads. Typically, the IW is clogged when a thread has a long latency instruction

with many dependents. Dependents of the long latency instruction (and their respective depen-

dents) will clog the IW space until the long latency instruction fully executes.

However, a Mercury’s DDS unit is relatively free from this issue. First, its dependency chains

are substantially shorter. A nondecoupled thread’s dependency chain commonly starts with a load

instruction, continues with a number of computing instructions, and eventually ends with a store

instruction. However, a decoupled access thread’s dependency chain starts with a load instruction

and ends with a PRODUCE instruction that supplies data to the CU. Second, all of the instructions in

an access thread are low-latency instructions except for loads. Furthermore, most of those loads are

terminal load instructions that do not have any dependents. As a result, sharing the IW among ac-

cess threads, which are naturally short-dependency chained and less prone to dependency-related

stalls, reduces or even eliminates the potential performance loss from sharing the IW as it would

have been the case for a traditional SMT processor executing normal threads.

Sharing memory system resources. There are two types of memory system resources: those

shared across the chip (e.g., main memory, shared caches) and those private to a core (L1 cache,

MSHRs). A shared, SMT-based DDS unit has an advantage in that all threads running on the core

share the per-core memory system resources that can be easily aggregated. For example, if the

baseline single DDS unit has a 16KB L1 cache, a four-way SMT DDS unit will have a 64KB L1 cache.

In a scenario where access threads from different applications are supplying data to different CUs,

this sharing allows one thread to utilize memory resources that other threads are not utilizing (if

any). In addition, a multithreaded application can benefit from inexpensive interthread communi-

cation through a (larger) L1 cache instead of a shared LLC that incurs coherence overheads.
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Fig. 5. Improved microarchitecture for a DeSC-style DDS unit that builds on top of an OoO core. Darker
structures are the new additions for Mercury.

4 IMPROVING THE DDS MICROARCHITECTURE

In addition to the parallel DDS unit configurations we presented in the previous section, this work

identifies some limitations for the supplier unit of DeSC and presents two microarchitectural tech-

niques to overcome such limitations. In fact, these improvements can be applied to any DDS unit

including the conventional DeSC (one-to-one configuration), Mercury-N, and Mercury-Shared.

Still, these improvements are more beneficial for parallel systems containing multiple DDS or a

shared DDS with a tighter resource (i.e., the IW).

Figure 5 shows the microarchitecture of the DDS unit and the CU. The DDS uses PRODUCE in-

structions to push data into the data buffer in the CU. For each produced data item, there is a

corresponding CONSUME instruction (or its equivalent) executed on the CU to retrieve it. Similarly,

the DDS executes a STORE_ADDR instruction to update the store address buffer with a calculated ad-

dress for every original store instruction, whereas the CU executes a STORE_VAL instruction to pass

the value generated (on the CU) to the DDS unit. The store value buffer is a structure that allows

the reuse of the computed data as determined by a decoupled store-to-load forwarding technique

described in Ham et al. [15]. The following sections explain the DDS microarchitecture in more

detail and propose two improvements.

4.1 Supply Queue for Terminal Loads

A DDS unit is latency tolerant by nature, which allows for a near-zero latency exposed to the

CUs. However, for memory-intensive applications, or when high-performance CUs are used, the

DDS cannot cope with the higher data consumption rate, resulting in a bottleneck of the entire

system. One key difference between a DDS unit and a conventional core is that their workloads

are different. Although a conventional core runs general-purpose code, a DDS unit only runs

access threads that contain just simple address calculation and data access instructions. Therefore,

the only remaining long-latency instructions that can potentially hurt data supply throughput is

a load instruction itself. This section explores how a specialized DDS design can ameliorate the

effect of long latency loads on the data supply throughput.
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In an access slice, there are two types of loads: loads whose results are only used in the execute

slice and loads whose results are later used within the access slice. Specifically, the first type of

loads are called terminal loads [15]. DeSC identifies such terminal loads with its compiler frame-

work and marks them using a LOAD_PRODUCE instruction. DeSC presents an optimization for such

loads to prevent them from blocking the head of the ROB. The key intuition is that since terminal

loads’ values will not be reused within the DDS unit, they can be retired early from the ROB (out-of-

order) and be moved to a CAM-structured buffer (named the terminal load buffer), where they wait

until their values are returned from memory that are then communicated, out-of-order, to the CU.

Although DeSC’s proposed solution does the job, it utilizes relatively expensive and not scalable

CAM structures on both the DDS units and CUs. Furthermore, since DeSC’s out-of-order com-

munication may introduce a deadlock, it also requires a deadlock prevention mechanism whose

implementation can be expensive. This article proposes a cost-effective mechanism to manage

terminal loads without using a CAM structure.

For every instruction that sends data to the CU (i.e., PRODUCE), an entry is allocated in a RAM

structure named the supply queue (depicted in Figure 5). Then, when a terminal load executes and

misses in the cache, an MSHR will be assigned for it. Unlike a conventional core, however, this

MSHR records this terminal load’s position in the supply queue (instead of a destination register

or a ROB entry—positions in the queue are assigned in-order at decode time) to indicate where to

buffer the value once it is serviced by the memory. This mechanism allows a terminal load that got

its MSHR assigned and reaches the head of the ROB to safely commit, even if its data is not ready,

since the assigned MSHR will provide the data directly to the corresponding entry in the supply

queue. Data from the head of this supply queue is passed over to the data buffer on the CU in-order.

This in-order communication allows the data buffer to be implemented as a RAM structure, and so

any CONSUME instruction in the CU can access its matching data without an expensive associative

search. Since our supply queue is much simpler than the terminal load buffer in Ham et al. [15], it

is easier to enlarge to enhance performance.

4.2 Attacking Indirect Loads: The Miss-Dependent Instruction Buffer

No decoupling approach will be broadly useful without addressing long-latency indirect loads (i.e.,

loads whose outcome is used to compute another load’s address). It is worth noting that indirect

loads have a high potential to limit the system performance for some classes of applications (e.g.,

graph analytics, sparse matrix computation) that include many of such loads. The miss-dependent

instruction buffer (MDI-B) is our novel microarchitectural approach to address this issue.

Miss-dependent instruction buffer. By attacking the long-latency indirect loads that can appear

in an access stream, the MDI-B eliminates the ultimate bottleneck on the DDS performance. The

result is similar to an access stream comprised only of short-latency instructions.

The main intuition is simple: migrate any long-latency indirect load and its dependent instruc-

tions to the MDI-B (a FIFO buffer) when they reach the head of the ROB. This allows other newer

instructions to reach the head of the normal ROB and commit earlier than expected, bypassing

these older miss-dependent streams. The miss-dependent instructions (migrated to the MDI-B)

will execute in-order and commit when they reach the head of the MDI-B. If a conventional core

running nondecoupled code implemented the MDI-B, it would be ineffective. In such case, load

instructions often have deep dependency chains that would cause many instructions to be mi-

grated to the MDI-B. However, we take advantage of the DDS running decoupled access code,

which has very short dependency chains. Unlike conventional threads, the only dependents of load

instructions in an access thread are address calculation instructions or instructions to compute

branch conditions. For this reason, a small FIFO-based MDI-B buffer (32 entries in our experi-

ments) can effectively house the dependents of indirect loads in a decoupled scenario.
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Fig. 6. Hardware structures to support MDI-B.

Fig. 7. Indirect store address example.

The MDI-B approach is similar to previous literature on latency-tolerant out-of-order core de-

signs [10, 21, 31, 46]. However, the MDI-B approach is considerably less complex and utilizes sub-

stantially fewer resources compared to such schemes. This is because we exploit the characteristic

of a decoupled access thread and target a smaller problem—mitigating the impact of indirect loads

in decoupled access threads. Designers can choose to exclude this extension if a target application

is known not to be heavily reliant on indirect loads.

Migrating instructions to the MDI-B. Figure 6 shows the MDI-B structures. When an indirect

load reaches the head of the ROB and misses in the LLC, it is moved to the MDI-B and its destination

register is marked as poisoned. Later, if any instruction reaches the head of the ROB whose input

register is poisoned, it is also moved to the MDI-B and its destination register is poisoned. This

poisoning mechanism moves miss-dependent instructions to the MDI-B.

Branches and other exception-prone instructions (e.g., system calls, OS-related or other priv-

ileged instructions) are not migrated to the MDI-B to avoid a complicated recovery. In addition,

nonterminal loads that depend on other nonterminal loads are neither migrated to prevent them

from blocking the in-order (FIFO) MDI-B structure. When such instructions reach the head of the

ROB with a poisoned input register, they simply wait until all other instructions in the MDI-B

complete. Any other instruction reaching the head of the ROB just commits from there when its

execution finishes.

Early retirement of terminal loads with MDI-B. With the MDI-B optimization, a terminal

load at the head of the ROB often cannot commit due to the presence of unknown STORE_ADDR
instruction migrated to the MDI-B. Figure 7 shows a code example for such case, where i2 is a

STORE_ADDR instruction that depends on the load (i1) preceding it. If the MDI-B is enabled and

i1 misses in the LLC, i1 is migrated to the MDI-B. Since i2 depends on i1, it is migrated as well.

At that point, i3 is at the head of the ROB. However, since i2’s address is unknown, and it may

alias i3, it cannot retire. In this case, i3 should have to wait until i2 retires from the MDI-B, then

nullifying its potential benefit.

To attack this issue, our approach allows speculatively executed terminal loads to retire from

the ROB even when there are preceding unknown store address instructions. When a terminal
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load reaches the head of the ROB with a preceding unknown STORE_ADDR, it removes itself from

the ROB and retires to a CAM structure named the speculative terminal load buffer (STLB). As

shown in Figure 6, an STLB entry is a tuple of address, seq#, location in the supply queue, and a

counter that is initialized to the number of unresolved store addresses in the MDI-B. In addition,

for each new STLB entry, the entry in the supply queue corresponding to the terminal load moved

to the STLB entry is marked as not ready. This prevents data from being sent to the CU while the

terminal load is still possibly dependent on a STORE_ADDR in the MDI-B. Every time a STORE_ADDR
instruction executes from the MDI-B, its address is checked against the loads in the STLB. In the

case of a match, the decoupled store-to-load forwarding mechanism proposed in Ham et al. [15] is

triggered. Otherwise, every younger (in terms of seq#) instruction’s counter field is decremented by

1. Whenever an STLB entry’s counter becomes zero, it is removed from the STLB and its matching

supply queue entry is marked as ready again. Our experiments show that a tiny STLB (8-entries)

is sufficient.

4.3 Potential Issues and Solutions for the MDI-B

Since the MDI-B extension allows instructions to bypass earlier indirect load instructions and their

dependents, few aspects of the processor microarchitecture should be changed. In the following,

we discuss such changes.

Register management. In a conventional unified register file architecture, when an entry from

the ROB retires, the physical register that corresponds to the previous mapping of the just commit-

ted instruction’s destination architectural register is freed. However, in our proposed design, since

ROB entries can commit earlier than MDI-B entries, the physical register cannot be freed when

the target physical register is currently poisoned. In such a case, instead of freeing the physical

register, we allocate an entry in a RAM structure named the register deallocate queue (RDQ) (see

Figure 6) with the current instruction’s sequence number (seq#). Whenever an instruction in the

MDI-B commits, it compares its sequence number to that of the head of the RDQ. If the former is

higher, the corresponding register of the RDQ’s head entry can be freed.

Exception/misspeculation recovery. Mercury uses a retirement register alias table (RRAT) (see

Figure 6) to recover from an exception or a branch misspeculation. For supporting the MDI-B

extension, the RRAT is extended with one extra column that represents the register state seen by

the MDI-B (in addition to keeping the register state seen by the ROB). Now, when an instruction

retires from the ROB (or it is migrated to the MDI-B), it updates the ROB column of the RRAT with

its physical register number. However, when an instruction retires from the MDI-B, it updates the

MDI-B column of the RRAT. In addition, when the MDI-B frees a register, it clears the entry in the

MDI-B’s column. Therefore, when a branch misprediction or an exception occurs on instructions

in the ROB, the core simply waits until (a) all the MDI-B instructions commit and (b) all preceding

instructions in the ROB commit, then flushes the pipeline. By doing so, the core rolls back to

the register state in the ROB’s column of the RRAT. Analogously, when an exception occurs on

instructions in the MDI-B (the only possible exception is a page fault), the core waits until the

instruction reaches the head of the MDI-B and flushes the entire pipeline. Then, the core rolls

back to the register state in the MDI-B’s column (or the ROB’s column counterpart if the MDI-

B’s column for a particular row is empty). Note that branch instructions are not migrated to the

MDI-B, and thus there is no branch misprediction happening in the MDI-B to recover from.

Synchronization instructions. The Mercury DDS unit has a weak consistency model similar

(or little stronger) to that of ARMv7’s that requires programmers to use appropriate synchroniza-

tion instructions such as fences when communicating between threads. With the proposed MDI-B
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Fig. 8. Workload categorization.

extension, fences or any other synchronization instruction (a) do not commit when there are pre-

ceding terminal loads or (b) the MDI-B is not empty. Instead, such instructions simply wait at the

head of the ROB until such conditions are cleared.

5 MERCURY EVALUATION

5.1 Methodology

We use a heavily modified version of the Sniper simulator [3] for the performance evaluation.

Specifically, we extend Sniper’s cycle-level out-of-order processor model [4] so that it can model

Mercury’s ISA and hardware components.

Workloads. Our workloads consists of 15 parallel kernels from the Parboil [47] and Rodinia [7]

suites (mostly OpenMP versions suited for a CPU execution). Note that benchmark suites include

more than 15 kernels; however, we excluded a few kernels for our experiments because they are

extremely communication bound (e.g., bfs, b+tree). These kernels benefit little from an accelerator-

based implementation or a decoupled architecture and thus are not considered as our targets. Sim-

ilarly, few extremely compute-bound (e.g., cutcp) kernels are also excluded to avoid redundancy

while keeping some as representative cases. These extreme benchmarks can be easily identified

by compilers and help one to employ a decoupled architecture only when it is expected to be

beneficial. We excluded three benchmarks because of our evaluation framework’s incompatibility.

Note also that some of these OpenMP kernels provided by the official benchmark suites are not

tightly optimized for CPU execution, so its behavior may be different from that expected for highly

optimized kernels (e.g., BLAS for matrix multiplication).

To identify applications’ sensitivity to memory latency, we run the 15 benchmarks on four base-

line OoO cores and measure their speedup on a perfect L1 cache system. Based on this result (Fig-

ure 8), we classify our workloads into four categories: compute intensive (Category 1), moderately

compute intensive (Category 2), moderately memory intensive (Category 3), and memory inten-

sive (Category 4). Utilizing these four categories, we construct eight multiprogrammed workloads

with varying memory intensity (Table 1). To evaluate their performance, we synchronize all ap-

plications at their entrance point to the region of interest and run until one application finishes.

For the performance metric, we measure system throughput (STP) as suggested in Eyerman and

Eeckhout [12].

Configurations. Table 2 summarizes the architectural parameters used to model the baseline and

evaluated Mercury systems. For the baseline case, four conventional OoO cores are utilized. We

only report the baseline with the base memory system, as it is not limited by memory BW and it

does not get any benefit from the more aggressive memory system. For Mercury systems, simpli-

fied baseline cores (with no memory hierarchy nor LSQs) are utilized as the CUs. For Mercury-N

we evaluate a case with four DDS units and four CUs. For Mercury-Shared, we evaluate a system
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Table 1. Evaluated Multiprogrammed Mixes

MP1 mri-q, kmeans, cfd, hotspot 2x Cat1, 2x Cat2

MP2 mri-q, kmeans, pathfinder, nn 2x Cat1, 2x Cat3

MP3 mri-q, kmeans, backprop, nw 2x Cat1, 2x Cat4

MP4 cfd, hotspot, pathfinde, nn 2x Cat2, 2x Cat3

MP5 cfd, hotspot, backprop, nw 2x Cat2, 2x Cat4

MP6 pathfinder, nn, backprop, nw 2x Cat3, 2x Cat4

MP7 mri-q, cfd, pathfinder, backprop Cat1, Cat2, Cat3, Cat4

MP8 kmeans, hotspot, nn, nw Cat1, Cat2, Cat3, Cat4

Table 2. Architectural Simulation Parameters

Baseline Cores Mercury-N DDS Unit Mercury-Shared DDS Unit

Core

4x OoO cores 4x OoO cores 4-way SMT core

64-entry ROB 64-entry ROB 4 x 64-entry ROB

32-entry IW / 2.0GHz

Fetch/Decode 4-way 4-way 2 x 4 way

Issue Width 4-way 4-way 8-way

Mercury

Structures

4 x 256-entry supply queue/data buffer

N/A 4 x 128-entry store address/value buffer

4 x [32-entry MDI-B]

(with 32-entry RDQ, 8-entry STLB)

L1 Cache
32KB/core 32KB/core 128 KB

4-way, 2ns latency, 64B cacheline

L2 Cache 1MB, 8-way, 10ns latency, 64B cacheline

Main Memory

(Base)

16 MSHRs/core 16 MSHRs/core 64 MSHRs

51.2GB/s BW, 100ns base latency

Main Memory

(Aggressive)

N/A 64 MSHRs/core 256 MSHRs

N/A 204.8GB/s BW, 100ns base latency

consisting of a single, four-way SMT DDS unit and the same four CUs. Note that we evaluate the

Mercury-Shared DDS unit with 2x larger fetch/decode/issue width than the Mercury-N DDS to

avoid Mercury-Shared performance severely limited by its peak instruction BW.

Area. We use McPAT [32] and CACTI [33] with a 22nm technology node to compare the area and

static power consumption of both Mercury configurations. Experiments show that a four-way

SMT DDS for Mercury-Shared consumes 2.50x less area and 3.09x less static energy compared

to the four DDS units used for Mercury-N. Note that the baseline Mercury-N system utilizes

about 2x or slightly more than 2x area (and static power) compared to the baseline, as it requires

an additional core (i.e., DDS) in addition to the CU. This implies that Mercury-Shared requires

about 40% more area and 33.3% more static power compared to the baseline.

5.2 Overall Performance Evaluation

Figures 9 and 10 show the effectiveness of Mercury at improving system performance. There are

three key sources of Mercury speedup: hiding long latency memory accesses (i.e., like a perfect

cache), improving the access time of on-chip storage, and parallelization of address computation
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Fig. 9. Performance of Mercury running multithreaded workloads. The four memory-bound workloads use
a right-side 2x scaled y-axis. Mercury-N offers 3.7x speedup and Mercury-Shared offers 2.9x speedup over
a baseline four-core CMP. With a more aggressive memory system, they often outperform the baseline CMP
with a perfect L1 cache (i.e., always hit). Note that Mercury-Shared takes only 40% of the area for the DDS
compared to Mercury-N.

Fig. 10. Performance of Mercury running multiprogrammed workloads. Mercury achieves substantial
speedup (Mercury-N: 3.7x, Mercury-Shared: 3.5x) over the baseline CMP and often outperforms the perfect
L1 with the aggressive memory system.

and value computation. First, Mercury avoids exposing the memory latency to the CUs because

DDS units access data ahead of time and supply data to them. Second, Mercury CUs retrieve data

from a smaller data buffer instead of accessing a larger L1 cache, and thus their data access latency

is smaller (one cycle instead of four cycles). Finally, unlike in a conventional architecture, address

computations (in the DDS) and value computations (in the CUs) happen in a truly parallel manner.

The second and third benefits allow Mercury to outperform a perfect L1 cache case (i.e., a baseline

with an L1 cache that always hits), which only gets the first benefit.

Performance results (multithreaded case). Figure 9 shows Mercury’s performance normal-

ized to the baseline CMP (4x OoO cores). For each workload, the first two bars represents Mercury

configurations, and the next two bars represents the same configuration with the aggressive mem-

ory system, which has higher BW limit and MSHR counts. Here, the first two bars are normalized

to the baseline system with a base memory system, whereas the next two bars are normalized to

the baseline system with the baseline system with an aggressive memory system. The rightmost

bar represents a baseline system with a perfect L1 cache that models an ideal latency-tolerant

OoO core or an ideal prefetcher (i.e., which loads all data ahead of time without being limited

by the cache size or the available bandwidth). As shown, Mercury with the base memory sys-

tem achieves significant speedup across all workloads except for compute-bound ones. There are

many workloads where Mercury equals or even outperforms the perfect L1 cache results. Fur-

thermore, the Mercury-Shared configuration often matches or even exceeds the performance of

Mercury-N, which has 2x more instruction BW and 4x larger IW, and uses 2.5x more area. The

Mercury-Shared configuration can achieve even higher performance than Mercury-N when

there is interthread data sharing (e.g., path, sgemm). In spmv and backprop, Mercury-N outper-

forms Mercury-Shared by a substantial margin. This is because these two workloads contain

indirect memory access patterns that pressure Mercury-Shared’s smaller IW.
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Fig. 11. Performance of Mercury (with an aggressive memory system) over a single core for multithreaded
workloads. Mercury combines the benefits of parallelism and decoupling (average speedup of 3.73x) to
achieve multiplicative speedups (Mercury-N: 15.3x, Mercury-Shared: 12.3x).

When Mercury operates on the more aggressive memory system, Mercury’s throughput is not

held back by the limited memory BW, and it achieves substantial speedup, especially for memory-

bound workloads, with an average speedup of 3.7x on Mercury-N and 2.9x on Mercury-Shared.

In almost all workloads, Mercury systems achieve equivalent or even higher performance than

what an ideal latency-tolerant core (i.e., perfect L1) can achieve for the reasons outlined at the

beginning of this section. An impressive 7.8 to 11x speedup in memory-intensive workloads shows

that Mercury has the potential to deliver very high performance when given enough external

resources. Considering that recent emerging memory technologies such as HBM or HMC deliver

high bandwidth [20, 23], we argue that this is a practical scenario.

Performance results (multiprogrammed case). Figure 10 shows Mercury’s performance with

multiprogrammed workloads. As in the multithreaded case, Mercury with the base memory

system achieves notable speedup across all mixes. Note that overall speedup is larger in mul-

tiprogrammed workloads compared to multithreaded ones because there is no synchronization

point (or barriers) across threads, which makes Mercury temporarily lose the decoupled dis-

tance. In addition, multiprogrammed workloads inherently exhibit imbalance across threads, from

which Mercury-Shared benefits. For this reason, despite having more resources and larger area,

Mercury-Shared often outperforms the Mercury-N configuration (e.g., MP3, MP5, MP7, MP8).

When Mercury is operating on the more aggressive memory system, it achieves significant

speedup (i.e., average of 3.7x on Mercury-N and 3.5x on Mercury-Shared ), which is even higher

than perfect L1 cache speedup in most workloads, as in multithreaded workloads. However, unlike

in the base memory system setup, the Mercury-N configuration generally outperforms Mercury-

Shared. With its ability to tolerate a large memory latency, a Mercury-Shared DDS unit is now

limited by its smaller instruction BW and IW size when operating with the more aggressive mem-

ory system.

Comparison with a single core. Finally, with the aim of showing the multiplicative effect of

decoupling and parallelism, Figure 11 compares Mercury systems’ throughput over a single out-

of-order core on aggressive memory systems. In addition, we show the speedup of Mercury-1 to

demonstrate how parallelism brings additional benefit in addition to the benefits of decoupling.

As shown here, both Mercury-N and Mercury-Shared can achieve greater than 25x throughput

improvement compared to a single, conventional core on memory-bound workloads. In such case,

around 4x (or more when there is data sharing across threads on read-only data) of the speedup

comes from parallelization, and more than 6x speedup comes from decoupling (i.e., memory la-

tency hiding and improving access time for on-chip storage). This shows that Mercury effectively

combines the benefits of parallelism along with the use of a decoupled data supply system.
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Fig. 12. Speedup of Mercury with accelerator CUs over a set of four accelerators with direct cache hierar-
chy access. Both Mercury systems (with the aggressive DDS) significantly improve the performance of the
baseline four-accelerator system (Mercury-N: 3.11x, Mercury-Shared: 2.61x) by providing memory latency
tolerance to their paired accelerator CUs.

Accelerator system results. Figure 12 explores the performance of Mercury configurations (on

aggressive memory systems) when the CUs are hardware accelerators. For this experiment, we

utilize the approximate model for accelerators proposed in Ham et al. [15], which models acceler-

ators as idealized OoO cores (e.g., large resources, perfect instruction cache and branch predictor)

with the ability to execute applications’ key loops in parallel. Now, the baseline configuration

utilizes four accelerator CUs paired with the cache hierarchy. Mercury configurations use four

accelerator CUs but without direct access to memory, paired either with four DDSs (in Mercury-

N) or with a single, shared DDS (in Mercury-Shared). The figure also reports each Mercury

configuration with a more aggressive DDS design, in the sense that they have 2x larger design pa-

rameters (e.g., larger IW, larger ROB, larger fetch/decode/issue BW). Finally, the perfect L1 cache

configuration is shown, which represents the baseline system with four accelerator CUs operating

with perfect L1 caches.

On average, Mercury-N improves the performance of accelerator CUs by 2.42x, whereas

Mercury-Shared improves performance by 1.77x. Particularly, both Mercury configurations are

much more effective in memory-bound workloads when compared to stand-alone accelerators

directly paired with a cache hierarchy. However, in many workloads, speedup from the Mercury-

Shared configuration is limited because the shared DDS has a limited data supply rate due to its

limited resources (i.e., fetch/issue BW, IW). One interesting exception is backprop. This workload

has frequent accesses to shared data across threads and Mercury-Shared benefits from its shared

L1 cache and achieves better performance than Mercury-N. With the more aggressive DDS de-

signs, the overall speedup of Mercury configurations improves greatly. On average, the Mercury-

N configuration achieves 3.11x speedup and the Mercury-Shared configuration achieves 2.62x

speedup over accelerators directly paired with the cache hierarchy. In particular, utilizing the ag-

gressive DDS design improves the performance of Mercury-Shared since it was bottlenecked by

the limited data supply throughput of the shared DDS. In most applications, both Mercury-N and

Mercury-Shared achieve the performance comparable to accelerators with the perfect L1 cache.

Still, in some applications (i.e., hotspot, path), accelerators with a perfect L1 cache perform better

than Mercury configurations because such applications include a substantial amount of address

computation that is better handled in accelerators than in DDSs.

5.3 Comparing Mercury-N and Mercury-Shared

Overall, the previous results show that Mercury-N and Mercury-Shared can both work as

a building block for larger parallel systems. Such systems can contain multiple instances of

Mercury-N and Mercury-Shared together to achieve even larger heterogeneous parallelism.

Rather than relying on one particular design, it is important to judiciously utilize both config-

urations depending on the target since both Mercury-N and Mercury-Shared have advantages

and disadvantages as we discuss next.
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Fig. 13. Effect of fetch policies for Mercury-Shared. The proposed fetch policy provides moderate speedup
(e.g., 10%) on workloads with a mismatch between the data supply rate and the data consumption rate.

Mercury-N’s main advantage is that it provides a simpler, modular design that can deal with

a variety of scenarios. Its intuitive nature allows for easy deployment, and it scales relatively well

as long as an application has enough TLP. Still, this approach can result in capability underuti-

lization when there is a mismatch between a DDS unit’s data supply rate and its paired CU’s data

consumption rate. As a result, it utilizes more resources compared to Mercury-Shared while

achieving similar performance in many workloads or circumstances, such as when it is limited by

system memory bandwidth (e.g., Mercury performance with the base memory system in Figures 9

and 10). In addition, this approach is not well suited for the case when CUs cannot be designed at

a finer granularity.

However, Mercury-Shared avoids the drawbacks of Mercury-N by utilizing an SMT-based

shared DDS unit. In many cases, particularly in scenarios where each access thread is running

different applications with varying data consumption rates, Mercury-Shared can perform equal

to or better than Mercury-N (see Figure 10 with the base memory system). Of course, Mercury-

Shared can perform worse in certain situations (i.e., no data supply/consumption rate mismatch,

few DDS stalls, or aggressive memory systems) where its shared instruction BW or IW can work

as bottlenecks (e.g., the Mercury-Shared results with the more aggressive memory system in

Figure 9).

5.4 Effects of Optimizations

Fetch policy effectiveness. Figure 13 highlights how Mercury-Shared performance changes

with varying fetch policies. Performance is normalized to the same system’s performance case

with the ICOUNT policy as the baseline. The decoupled data supply system performance is not only

dependent on the amount of resources a thread has but also depends on the data supply rate and

the data consumption rate. When the CU’s data consumption rate is low and thus the data buffer

is almost full, since access threads have already supplied many data, allocating more resources

to this access thread does not achieve any speedup. Our proposed decoupling-aware fetch policy

(Section 3.3) prioritizes those threads having low data buffer occupancy and deprioritizes threads

having a high data buffer occupancy. The proposed decoupling-aware policy works better than

the base ICOUNT when the workload has applications whose data buffer occupancy goes above or

below those thresholds during the execution. Overall, it achieves over 10% speedup in MP1 and

MP7. The policy almost always performs better than ICOUNT because it conservatively falls back

to the ICOUNT policy when there is no thread having high or low data buffer occupancy.

MDI-B effectiveness. Figure 14 shows how the use of the MDI-B improves performance on work-

loads that suffer from indirect memory accesses. In our evaluated workloads, there are two that

exhibit frequent indirect accesses: backprop and spmv. However, the fact that we only have two

workloads that show an indirect access pattern does not mean that indirect load patterns are not

popular in the real world. In fact, they are one of the key access patterns in important application
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Fig. 14. Effect of the MDI-B on parallel workloads with indirect loads: Mercury-N (a), Mercury-Shared
(b), and Mercury-Shared (multiprogrammed) (c). The MDI-B provides additional 61% to 83% speedup to
Mercury-N systems.

domains that include data mining, machine learning, graph analytic, and so forth. As shown in

Figure 14(a), the use of the MDI-B improves backprop’s performance by around 83% and spmv’s

performance by 61% for the Mercury-N configuration when compared to Mercury-N without the

MDI-B extension (but with all other optimizations). However, for Mercury-Shared (Figure 14(b)),

the improvement is less. This is because Mercury-Shared has a natural ability to still run other

threads while one is suffering from indirect load access latency. Figure 14(c) supports this by show-

ing that multiprogrammed workloads, including backprop, do not suffer a noticeable performance

degradation without the MDI-B approach.

6 RELATED WORK

Latency-tolerant architectures. The kilo-instruction processor [10], Bolt [21], waiting instruc-

tion buffer [31], continual flow pipeline [46], EMC [17], and several other previous works [1, 6,

40, 41] explored the potential of migration or early retirement of long latency loads and their

dependents from the ROB or issue queue. While sharing the same motivation, our proposed MDI-

B extension exploits a unique opportunity presented in a DAE architecture to achieve a similar

benefit at a much lower complexity.

Execution-based prefetching techniques. Execution-based prefetching techniques [5, 13, 18,

28, 30, 34, 35, 39, 42, 48, 54–56] are often related to decoupled execution. The common key idea

of such schemes is simple: construct a thread by hand, compiler, or hardware, and then let this

constructed thread run on a separate processor, core, or even on the same core to let this helper

(or precomputation) thread fetch data into nearer storage (e.g., cache) ahead of compute time.

Although the aforementioned prior work is effective for providing extra latency tolerance for con-

ventional, general-purpose cores, such approaches are not suitable for accelerator-oriented het-

erogeneous systems for a few reasons: (a) some techniques only provide a subset of data that a

loosely connected accelerator without direct access to main memory needs, (b) some approaches

are speculative and thus waste the limited on-chip storage by supplying excessive data that ends

up not being used, and (c) some of such proposals are designed for multicore systems where all

cores have the same capabilities (e.g., all of them with access to the memory system). Alternatively,

Mercury envisions efficient data supply for parallel, heterogeneous architectures where the CUs

can be accelerators without the ability to directly access the memory hierarchy.

Other prefetching techniques. Stride-based prefetchers [14, 27, 38] and correlation-based

prefetchers [19, 24, 26, 36] are widely used to predict and prefetch the next data to be accessed

with a minimal amount of computation. Such approaches often perform the less amount of com-

putation when compared to the execution-based prefetching techniques, and thus their implemen-

tation tends to be simpler; however, they tend to be much more speculative and less accurate. In
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addition, they are not suitable for accelerator-oriented heterogeneous systems because (a) they

only fetch a subset of the necessary data and (b) likely to fetch unnecessary data and waste the

limited on-chip storage and the off-chip bandwidth.

Hybrid core design. Some other recent works propose to utilize multiple different core microar-

chitectures for higher performance or energy efficiency. For example, MorphCore [29] can operate

as both an OoO core or a SMT core. Shelf [43] utilizes an in-order pipeline within an OoO core

for higher efficiency, whereas Outrider [9] utilizes a SMT core and decoupled execution to achieve

higher memory latency tolerance.

Parallel configurable heterogeneous architectures. The Widget architecture [51] proposes

utilizing a sea of fine-grain resources for power-proportional computing. The key intuition is that

allowing finer-grain hardware elements to work together to achieve higher performance allows

for more efficient computing. Although at a different scale, Mercury shares the same insight and

advocates configurable parallelism.

7 CONCLUSION

To summarize, this work has taken promising decoupled data supply work from the single-

threaded one-to-one pairing world into the parallel world. In doing so, it offers an opportunity

for parallel workloads to gain speedup from reducing or mitigating exposed memory latency in

addition to speedup from parallelism itself. Our approaches offer greater than 3.7x average speedup

with Mercury-N and 2.9x speedup with Mercury-Shared, but this effect is multiplied by other

forms of parallelism achieved. As a result, a Mercury-N or Mercury-Shared configuration, where

four OoO cores work as CUs, can accelerate memory-bound algorithms (i.e., stencil, sgemm, nw,

backprop) by more than 25x compared to a single core. Mercury’s decoupled data supply offers

the advantages of high programmability, modular design, and good speedup potential for many

accelerator-oriented systems. Going forward, as heterogeneous approaches become even more

common, decoupled data supply approaches must play an important role in managing the chal-

lenges of an effective data supply to accelerators.
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