
MERCI: Efficient Embedding Reduction on Commodity
Hardware via Sub-query Memoization

Yejin Lee
Seoul National University

Republic of Korea
yejinlee@snu.ac.kr

Seong Hoon Seo
Seoul National University

Republic of Korea
andyseo247@snu.ac.kr

Hyunji Choi
Seoul National University

Republic of Korea
hyunjichoi@snu.ac.kr

Hyoung Uk Sul
Seoul National University

Republic of Korea
stuartsul@snu.ac.kr

Soosung Kim
Seoul National University

Republic of Korea
soosungkim@snu.ac.kr

Jae W. Lee
Seoul National University

Republic of Korea
jaewlee@snu.ac.kr

Tae Jun Ham
Seoul National University

Republic of Korea
taejunham@snu.ac.kr

ABSTRACT
Deep neural networks (DNNs) with embedding layers are widely
adopted to capture complex relationships among entities within a
dataset. Embedding layers aggregate multiple embeddings—a dense
vector used to represent the complicated nature of a data feature—
into a single embedding; such operation is called embedding reduc-
tion. Embedding reduction spends a significant portion of its run-
time on reading embeddings from memory and thus is known to be
heavily memory bandwidth-bound. Recent works attempt to accel-
erate this critical operation, but they often require either hardware
modifications or emerging memory technologies, which makes
it hardly deployable on commodity hardware. Thus, we propose
MERCI, memoization for embedding reduction with clustering, a
novel memoization framework for efficient embedding reduction.
MERCI provides a mechanism for memoizing partial aggregation of
correlated embeddings and retrieving the memoized partial result
at a low cost. MERCI substantially reduces the number of memory
accesses by 44% (29%), leading to 102% (74%) throughput improve-
ment on real machines and 40.2% (28.6%) energy savings at the ex-
pense of 8× (1×) additional memory usage.

CCS CONCEPTS
• Information systems→Recommender systems; •Computer
systems organization; • Software and its engineering→ Soft-
ware system structures;

KEYWORDS
Memoization, Recommender Systems, Embedding Lookup

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446717

ACM Reference Format:
Yejin Lee, Seong Hoon Seo, Hyunji Choi, Hyoung Uk Sul, Soosung Kim, Jae
W. Lee, and Tae Jun Ham. 2021. MERCI: Efficient Embedding Reduction on
Commodity Hardware via Sub-query Memoization. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’21), April 19–23, 2021, Virtual,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3445814.
3446717

1 INTRODUCTION
The capacity of deep neural networks (DNNs) is scaling rapidly
to learn more complex and implicit relationships between entities
within a dataset. Embedding is a data type widely used to represent
such complicated nature of the dataset [4, 18, 40, 41, 48, 49]. It is
a vector projection of high-dimensional sparse feature space to a
low-dimensional dense space that preserves the semantics of the
original features, for DNNs to process it easily as an input.

For instance, in an online shopping website, each product on sale
can be treated as a feature and be represented with distinct embed-
ding. Embeddings are trained to extract the semantics of features
(i.e., products); therefore, co-appearing products (e.g., a notebook
and a pencil) will appear relatively adjacent in the embedding space.
In this setup, an online user can be represented by a set of products
that he/she has recently browsed or purchased. Thus, to process a
query on this user, it takes to gather this set of (products) embed-
dings and reduce them (e.g., sum, average, max, inner product) into
a single embedding. This operation is called embedding reduction.

Embedding reduction is widely used in various applications. For
instance, when an embedding represents a word [33, 39], embedding
reduction is used to represent a sentence or a document. Another
typical use case is in a personalized recommender system where it
performs embedding reduction to represent users (like in the previ-
ous example) or products [10, 22, 53]. It is known that processing
a single query takes a reduction of tens or even hundreds of em-
beddings in production-scale recommender systems such as Face-
book’s Deep Learning Recommendation Model (DLRM) [23] and
Alibaba’s Deep Interest Network (DIN) [58]. Unfortunately, embed-
ding reduction takes a significant portion of the total DNN runtime.
Previous studies [16, 19, 24, 41, 42, 51] report that embedding reduc-
tion (SparseLengthsSum in Caffe2[20]) takes significant portion,

https://doi.org/10.1145/3445814.3446717
https://doi.org/10.1145/3445814.3446717
https://doi.org/10.1145/3445814.3446717

ASPLOS ’21, April 19–23, 2021, Virtual, USA Lee, et al.

50% to 75% of the total inference latency for the models introduced
in DLRM[19, 24, 32]. This operation is known to be memory-bound
with a relatively small amount of arithmetic computation (i.e., hav-
ing a low arithmetic intensity [24, 32]). This inefficiency is mainly
due to sparse indexing, which generates a large number of irregular
memory accesses (details in Section 2.2). Since off-chip memory ac-
cesses are more expensive than on-chip computation in terms of la-
tency and energy consumption [9, 26, 52], it is critical to reduce this
high cost of memory accesses for efficient embedding reduction.

This problem has recently drawn much attention from the re-
search community, and techniques have been proposed to acceler-
ate this critical DNN operation. For example, RecNMP [32] and Ten-
sorDIMM [34] propose near-memory processing (NMP) architec-
tures to reduce the performance and energy cost of embedding re-
duction. Bandana [19] leverages non-volatile memory (NVM) tech-
nology as a lower-cost alternative to existing fully DRAM-based
storage while providing sufficient bandwidth by effective DRAM
caching. However, these proposals are not readily applicable to the
mainstream hardware as they require either hardware modifica-
tions or emerging memory technologies.

Memoization[38] is a classic technique that stores computation
results for an input (query) and reuses them when the same query
arrives again. It leverages time-space tradeoffs to reduce the num-
ber of memory accesses as well as compute cycles at the cost of ad-
ditional space. While applying memoization for efficient embedding
reduction is appealing, making it performant on the commodity
hardware poses several challenges. First, a memoization table must
be compact enough to fit in memory while providing broad cover-
age (hit rate). Second, the benefit of memoization should outweigh
the cost of the original embedding reduction operation. If a memo-
ization table lookup takes more memory accesses than accessing
all the embeddings it covers, memoization will not be practical.

This paper proposes MERCI, a novel memoization framework
for efficient embedding reduction on the commodity hardware.
We observe that there often exists a correlation structure among
features in a real-world dataset. In the previous example of online
shopping, the features of (notebook, pencil) or (bread, butter) have
a high chance to appear together in a user’s browse history, but
those of (bread, pencil) are not as much. To increase the coverage of
memoization, we propose fine-grained (sub-query) memoization to
perform partial reduction when processing a query. We introduce
Correlation-Aware Variable-Sized Clustering to identify clusters
of frequently co-appearing features of variable length with high
coverage and small table size, as well as a feature remapping scheme
to quickly locate a partially reduced embeddingwith a small number
of instructions. Our evaluation of MERCI on a 16-core Intel CPU
using both six synthetic and eight real-world datasets demonstrates
a geomean speedup of 102%, memory access reduction by 44%, and
system energy savings of 40.2% in embedding reduction.

In summary, our work makes the following contributions:

• We identify opportunities for applying memoization to effi-
cient embedding reduction for the first time.

• We introduce Correlation-Aware Variable-Sized Clustering,
a novel clustering scheme that carefully weighs the benefits
and costs of memoization to form clusters of co-appearing
features to memoize.

• We present MERCI, a memoization framework for efficient
embedding reduction. MERCI utilizes Correlation-Aware
Variable-Sized Clustering, feature ID remapping, and effi-
cient query processing to minimize additional memory ac-
cesses, hence maximizing the benefit of memoization.

• WeprototypeMERCI on two commodity platforms to demon-
strate its effectiveness in reducing the number of memory
accesses, which translates to substantial performance gains
and energy savings.

2 BACKGROUND AND MOTIVATION
2.1 Embedding Reduction
1 // N: Number of embeddings
2 // D: Dimension of each embedding vector
3 float emb_table[N][D];
4 def embedding_reduction (vector<int> query[B],
5 float &res[B][D]):
6 for qid=0 to B-1:
7 for i=0 to query[qid].size()-1:
8 int cur_feature = query[qid][i];
9 float[D] embedding_vec = emb_table[cur_feature];
10 /* Embedding Reduction */
11 for d = 0 to D-1:
12 res[qid][d] += embedding_vec[d];

Figure 1: Pseudocode of embedding reduction.

Embeddings. An embedding is a relatively low-dimensional con-
tinuous vector that often represents a single categorical feature.
For example, embedding generally represents a word in natural lan-
guage processing (NLP) models [18, 35]. Without embedding, each
word in a corpus would be assigned a dimension and is represented
as a one-hot vector, resulting in an extremely sparse vector. Even
worse, such representation does not contain semantic or syntactic
relations between words; hence, in many cases, a neural network
(NN) model maps this sparse vector to a low-dimensional dense
vector that captures a word’s semantic meaning and keeps similar
words in close distance. Such processing makes it easier for ma-
chine learning (ML) systems to infer the meaning of input values.

Similarly, embedding is often used in recommender systems[41,
49]. For instance, a recommender system at an online shopping
website often employs a NN model to learn the semantics of prod-
ucts and create an embedding for each product. These embeddings
are later used as categorical feature inputs to the recommender sys-
tem. In practice, modern recommender systems utilize an extensive
range of embeddings for different categorical features. One exam-
ple of a user-related categorical feature is a set of products a user
has recently browsed.
Embedding Reduction. In many cases multiple features can con-
stitute a single categorical variable. For example, a user can have
multiple recently browsed products or multiple favorite brands. To
represent these categories as a single embedding vector, embedding
reduction operation should be performed. This operation loads an
embedding vector for each feature (e.g., a single product), and per-
forms a reduction operation (e.g., sum, average, max, inner product)
on them. In NLP models, embedding reduction generates a sentence
or a document embedding by aggregating embedding vectors for
words in a given sentence or document[33]. Many other ML models
also adopt embedding reduction [7, 10, 13, 22], and all popular NN

MERCI: Efficient Embedding Reduction on Commodity Hardware via Sub-query Memoization ASPLOS ’21, April 19–23, 2021, Virtual, USA

1 // for i = 0 to query[qid].size()-1;
2 REDUCTION:
3 // %rcx: feature index i; initialized with 0
4 // %r9: query[qid].size()
5 FEAT_LOOP:
6 // for d = 0 to D-1:
7 // res[d] += embedding_vec[d];
8 ...
9 88.64% vmovups (%rsi), %ymm2
10 6.96% vadddps (%rax), %ymm2, %ymm0
11 1.68% vmovups %ymm0, (%rax)
12 ... // loop unrolling
13 FEAT_REPEAT:
14 inc %rcx
15 cmp %rcx, %r9
16 jne FEAT_LOOP

Figure 2: Instruction-level runtime breakdown for embed-
ding reduction using Amazon-Books dataset1.

frameworks like Tensorflow (embedding_lookup_sparse(...)) [1],
PyTorch (EmbeddingBag(...)) [44], and Caffe2 (SparseLengthsSum)
[20] support this operation.

Figure 1 shows the pseudocode of embedding reduction with the
sum operator. The embedding reduction operation takes a set of
queries (a batch of queries), and iterates over each feature in each
query (Line 6-7). For each feature, it retrieves the corresponding
embedding vector from the embedding table (Line 8-9) and performs
an element-wise reduction for the vector (Line 11-12). The result of
the reduction for each query (i.e., res) is the output of this operation.
Note that, although sum reduction is adopted here, other reduction
operators such as min, max, or inner product can be employed.

2.2 Bottleneck Analysis
Embedding reduction has a small number of arithmetic computa-
tions compared to the number of memory reads it generates. In a
CPU, which is a common deployment platform to accommodate a
large embedding table [24, 27, 32], SIMD optimization (e.g., Intel
AVX) is usually applied. Figure 2 shows the instruction-level profil-
ing results of the embedding reduction operation on the CPU using
perf annotate. The profiling results demonstrate that embedding
reduction operation is an extremely memory bandwidth-bound op-
eration as most of the runtime is spent on the SIMD load instruction
(vmovups). In this code, the SIMD add instruction is very efficient
with wide vector processing, but our internal profiling result shows
that memory accesses to the embedding table yield a high cache
miss rate (e.g., 52.8%) in L3 cache despite the existence of temporal
locality to a certain degree. This inefficiency is due to the following
reasons. First, embedding reduction accesses embedding table with
sparse index; thus, cache miss rate increases. Second, the embed-
ding tables are often much larger than L3 cache sizes. For example,
the embedding table for one million 256B embeddings takes 256MB,
which is an order of magnitude larger than a typical L3 cache size.
There are cases where multiple embedding tables are accessed at
the same time by different threads [32], thus further increasing the
memory pressure. Third, there are other data structures that con-
tend for the cache space (e.g., query, res). Finally, between batches
of embedding reduction, other layers of the DNN model may be
executed to evict most of the embedding vectors from the cache
hierarchy.
1See Section 7.1 for details on datasets.

Cell Phones Electronics Office Products

0

0.5

1

Figure 3: Correlation heat map for product pairs of top 150
items in the Amazon Review dataset.

In fact, the embedding reduction operation is the primary perfor-
mance bottleneck in many NN models. One example is Facebook’s
DLRM [41], in which their profiling results [23, 32] show that this
operation accounts for 50% to 75% of the total runtime in their mod-
els (i.e., RMC1, RMC2). Furthermore, with a scaling of the dataset
and adoption of specialized DNN accelerators to shrink the portion
of the compute-intensive layers, the bottleneck is likely to be more
critical in the future.

2.3 Opportunities for Sub-query Memoization
Memoization [38] is a classic technique that stores the result of com-
putation for an input (query) and reuses it when the same query
arrives again. Memoization leverages space-time trade-offs and is
the most effective when a small subset of inputs is likely to oc-
cur repeatedly. Memoization can be an effective solution to reduce
memory accesses in embedding reduction by replacing 𝑁 embed-
ding table lookups with a single memoization table lookup, where
𝑁 is the number of the embeddings that the given query should
aggregate. However, this coarse-grained (i.e., query granularity)
memoization has a limited coverage as memoization can be applied
only when the exact same query arrives again.

Instead, we identify new opportunities for fine-grained (i.e., sub-
query) memoization to enable partial reduction by exploiting the
correlation structure that exists in many real-world categorical fea-
tures. This partial reduction is possible as a reduction operator (e.g.,
sum) is commutative and associative by definition. For example, if a
query contains a user’s recently browsed items, there is a high prob-
ability that if notebook appears in the query, then pen would also
appear together. Similarly, (notebook, pencil) and (pencil, eraser) are
co-appearing pairs that are frequently browsed. In contrast, (pants,
pencil) and (shampoo, apple) are pairs that are much less likely to
appear together. We can exploit such patterns and memoize the par-
tial reduction for the frequently co-appearing features to replace
two or more memory accesses with single memory access.

Figure 3 illustrates such opportunities indeed exist in a real-
world dataset. This Amazon Review dataset contains lists of items
that are bought/viewed together, which are commonly utilized as a
categorical input of the recommender system. The heat map depicts
the pair-wise correlation of Top 150 frequently appearing items in
this dataset. Thus, both X and Y-axis enumerate the 150 items, and
a dot in the figure quantifies the correlation of a particular item pair
in the range of zero (low, white) to one (high, red). This heat map
shows pairs of items jointly appear frequently in the lists (queries),
which can be excellent targets of memoization. Although the figure
only shows the pair-wise co-appearance, there often exists a cluster
of co-appearing features (items) that have a high chance to appear
together. Thus, we propose to exploit this correlation structure to

ASPLOS ’21, April 19–23, 2021, Virtual, USA Lee, et al.

2 3 4 6 7

𝑒!+𝑒"+𝑒#

𝑒$+𝑒%
+

Super
partition

𝑒!+𝑒#
𝑒"+𝑒# cluster A

1. Offline clustering 2. Online Query Processing

cluster B

…

…

Memoization
table

Memory
access

…

Reduction
result

Feature Cluster

Partitioning❶

Correlation-aware
clustering❷

Memoize❸

Query

…

Figure 4: Overview of MERCI

perform memoization at a sub-query granularity (as few as two
embeddings) to provide much greater coverage than the coarse-
grained memoization scheme at a query granularity.

3 MERCI OVERVIEW
Although conceptually simple, building a performant memoiza-
tion system for embedding reduction is a challenging task. If done
naïvely using a dense array, the cost of memoization can nullify its
benefit. For example, storing partial sums of all possible combina-
tions would not be possible due to memory constraint; for 𝑁 embed-
dings, the required memory space is 2𝑁 ×{Embedding Vector Size}
where N often exceeds a million in many popular NNmodels. Utiliz-
ing sparse data structure (e.g., a sparse hash table) for maintaining
the memoized values and only storing partial sums of frequently
co-appearing features can solve this problem, but triggers consider-
able additional memory access to retrieve a memoized value.

MERCI proposes a way to get the best of both approaches. It
moves through two phases that we call offline clustering and online
query processing. Figure 4 shows the overall overview of MERCI.
Offline clustering. The offline clustering phase consists of two
steps. 1 MERCI first partitions 𝑁 features into a set of coarse-
grained, fixed-length partitions called super-partitions by utiliz-
ing an existing hypergraph partitioning algorithm on the training
dataset (Step 1). Each super-partition contains features that are
likely to appear together based on the history of queries. Then,
2 MERCI applies Correlation-Aware Variable-Sized Clustering to
each super-partition, dividing features in a super-partition into fine-
grained, variable-length clusters (Step 2). Finally, 3 MERCI creates
a memoization table that holds all possible partial sum combina-
tions for each cluster. Section 4 describes the details of these steps.
Online query processing. MERCI utilizes the memoization table
created from the previous phase to serve incoming queries. Once a
query arrives—for example, one requiring accesses to the feature
set of {2, 3, 4, 6, 7} as in Figure 4—MERCI first identifies which fea-
tures belong to the same cluster. In this example, features {2, 3, 4}
belong to cluster A and {6, 7} to cluster B. Hence, two memoized
partial sums (embeddings) are retrieved (i.e., 𝑒2 +𝑒3 +𝑒4 and 𝑒6 +𝑒7)
and summed up to generate the final output. While the baseline
scheme—performing embedding reduction without memoization—
would have to load five embeddings (i.e., 𝑒2, 𝑒3, 𝑒4, 𝑒6, 𝑒7), MERCI
only loads two. Because the embedding reduction is often mem-
ory bandwidth-bound, such reduction in memory accesses can lead
to performance improvement. Section 5 describes how the online
query processing phase utilizes clusters to optimize the memoiza-
tion table and accelerate the embedding reduction at runtime.

4 OFFLINE CLUSTERING
4.1 Step 1: Hypergraph Partitioning
The first step of the offline clustering phase is coarse-grained, fixed-
length partitioning of all 𝑁 features utilizing a hypergraph parti-
tioning algorithm. Hypergraph partitioning is a popular algorithm
that aims to generate a specified number of equal-sized partitions
while minimizing the number of accessed partitions for a given set
of queries; that is, features in the same partition have a high chance
of occurring together. We first partition all 𝑁 features into equal-
sized super-partitions of size 𝑆 with an existing hypergraph parti-
tioning algorithm implementation called PaToH [8]. As 𝑁 (num-
ber of features) can often exceed millions in today’s NNs, the hy-
pergraph partitioning algorithm first reduces this large problem
size to 𝑆 , and the proposed fine-grained clustering algorithm called
Correlation-Aware Variable-Sized Clustering (Section 4.2) is per-
formed on each super-partition to manage the complexity. While
PaToH works well for our purpose, there exists a variety of dif-
ferent hypergraph partitioning algorithms [8, 17, 30, 31, 47] with
different time-quality trade-offs [47], and there is no fundamental
limitation in using a different algorithm.

One question thatmight arise is whetherwe can use a hypergraph-
partitioning algorithm to create fine-grained clusters, instead of
the proposed two-step algorithm, as it also groups frequently co-
appearing features. It may be possible but suboptimal for the follow-
ing reasons. First, it only generates equal-sized partitions, which
either cannot support a set of co-appearing features larger than
the (fixed) partition size or waste memory space for a smaller set.
The size of a group of the co-appearing features would vary. Our
algorithm can reflect diversity by generating clusters of size one
to twenty or more. Second, the hypergraph partitioning algorithm
does not give a fine-grained knob for memory constraints. Once
the cluster size is set to 𝑆 (embeddings), the space overhead is fixed
to 𝑁 /𝑆 × (2𝑆 − 1)×{Embedding Vector Size}. On the other hand,
our algorithm can set memory limits in the granularity of less than
1% of the original embedding table size. Thus, the hypergraph par-
titioning algorithm can reduce the search space while increasing
the locality, but in itself, it is not sufficient for our purpose.

4.2 Step 2: Correlation-Aware Variable-Sized
Clustering

Once the hypergraph partitioning algorithm divides all 𝑁 features
into super-partitions containing 𝑆 features each, the next step is to
apply Correlation-Aware Variable-Sized Clustering to each super-
partition individually. It is a clustering algorithm that aims to fur-
ther divide the 𝑆 features into fine-grained variable-sized clusters
such that the resulting memoization table yields the maximum ben-
efit for a given memory constraint. All possible combinations of
the partial sum within a cluster are then stored for memoization.
Sketch of the Algorithm. The Correlation-Aware Variable-Sized
Clustering algorithm is applied to all 𝑁 /𝑆 super-partitions inde-
pendently. Let 𝑐𝑖 be a set of feature IDs that belongs to cluster 𝑖 . Ini-
tially, we let each feature form a distinct cluster by itself (i.e., 𝑆 clus-
ters of size one). In this state, there is nothing to memoize since no
cluster has more than one feature. The algorithm then selects and
merges two clusters; to select these clusters, it considers both the
benefit (i.e., decrease in the expected number of memory accesses

MERCI: Efficient Embedding Reduction on Commodity Hardware via Sub-query Memoization ASPLOS ’21, April 19–23, 2021, Virtual, USA

𝑞! = {𝑓" , 𝑓#}

𝑞" = {𝑓! , 𝑓#}

𝑞# = {𝑓! , 𝑓#}
𝑞$ = {𝑓"}

𝐼! = {𝑞", 𝑞#}
𝐼" = {𝑞! 𝑞$}
𝐼# = {𝑞! , 𝑞" , 𝑞#}

❷ Query set
per cluster

❶ Queries Q

𝑞!
𝐼" 𝐼#

𝐼$

❸ Merging 𝒄𝟏 and 𝒄𝟑
Benefit = |𝐼$ ∩ 𝐼#| = 2

𝑞$
𝑞"
𝑞#

𝑞!

𝐼" 𝐼$,#	

1 Mem. Access
2 Mem. Access
3 Mem. Access

𝐼!,#	 = {𝑞! , 𝑞", 𝑞#}

𝐼" = {𝑞! 𝑞$}

❹ Update inverted index

𝑞"
𝑞#

𝑞$

Figure 5: Illustration of the process for computing benefits
for a particular merge decision.

if merged) and the cost (i.e., increase in memory usage if merged).
This cost and benefit are estimated using queries in the training set,
as explained below. Once two clusters are merged, the algorithm
repeats the next iteration until it hits the memory size constraint.
Estimating the Cost. Because all possible combinations of fea-
tures in a cluster is memoized, a cluster with 𝑎 features occupies
(2𝑎 − 1) × {Embedding Vector Size} of memory space. 2𝑎 − 1 is the
cardinality of power set (excluding empty set) for a set with 𝑎 el-
ements. With this in mind, we can compute the memory cost of
merging cluster A having 𝑎 features and cluster B with 𝑏 features.
The newly formed cluster would require 2𝑎+𝑏 − 1 partial sums to
be stored; since the original memory usage was 2𝑎 − 1 + 2𝑏 − 1, the
increase in memory usage (i.e., the cost of merge) is (2𝑎+𝑏 − 2𝑎 −
2𝑏 + 1) × {Embedding Vector Size}.
Estimating the Benefit.Merging two clusters improve the chance
of features in a query to be in the same cluster (and hence memo-
ized). Therefore, the number of memory accesses for processing a
query would likely decrease. The amount of decrease is considered
as the benefit of merging two clusters. The queries in the training
set are analyzed to estimate the benefit. To explain, we define 𝑄 as
the set of queries being analyzed, and 𝐼 is an inverted index data
structure [14] for each cluster.

𝑄 = {𝑞𝑖 | 𝑖 = 0, 1, ..., 𝑞}, 𝐼𝑖 = {𝑞 𝑗 | ∃𝑓𝑘 ∈ 𝑐𝑖 , 𝑠 .𝑡 . 𝑓𝑘 ∈ 𝑞 𝑗 } (1)

Following the numbering in Figure 5, 1 𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4} is
a set of queries used for training, and each query is identified as a
set of feature IDs it accesses (e.g., 𝑓1, 𝑓2, ...), where each feature cor-
responds to a specific embedding vector. 2 Using this information,
an inverted index 𝐼𝑖 is built and maintained for each cluster 𝑖 . 𝐼𝑖
contains IDs of queries that contain at least one feature belonging
to cluster 𝑖 . For instance, if 𝑓1 appears in 𝑞2 and 𝑞3, 𝐼1 becomes {𝑞2,
𝑞3} as in Figure 5. 3 Then, the benefit of merging cluster 𝑐1 and 𝑐3
is computed as the cardinality of 𝐼1 ∩ 𝐼3, which is equivalent to the
number of queries that contain at least one feature from each of
𝑐1 and 𝑐3. That is, if 𝑐1 and 𝑐3 are merged, 𝑐1

⋃
𝑐3 would be memo-

ized, and thus queries 𝑞2 and 𝑞3 would require one memory access
instead of two saving one memory access for embedding reduction.
Note that, our scheme originally chooses the pair of clusters con-
sidering both benefit and cost; however, in this example, cost is the
same for all pairs of clusters (𝑎 = 1, 𝑏 = 1) and thus we only con-
sider the benefit.

𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑐𝑖 , 𝑐 𝑗) = |{ 𝑞𝑘 | 𝑞𝑘 ∈ 𝐼𝑖 ∩ 𝐼 𝑗 }| (2)

𝑐", 𝑐# 𝑐", 𝑐$ 𝑐#, 𝑐$

1 𝐼"

𝑐$
2 𝐼#

𝑐"
3 𝐼$

𝑐#
4 𝐼%

𝑐!

❸ argmax = { 𝑐%, 𝑐& }

1 𝐼"

𝑐$
2 𝐼# ∪ 𝐼$

𝑐(
4 𝐼%

𝑐!
32 𝐼#

𝑐"
3 𝐼$

𝑐#

❸ argmax = { 𝑐#, 𝑐$ }

1 𝐼"

𝑐$
2 𝐼# ∪ 𝐼$

𝑐(
4 𝐼%

𝑐!
3 3 𝐼# ∪ 𝐼$ ∪ 𝐼%42

𝑐)

𝑐", 𝑐% 𝑐", 𝑐& 𝑐", 𝑐# 𝑐%, 𝑐& 𝑐%, 𝑐# 𝑐&, 𝑐#

feature cluster

deleted deleted added

deleted deleted added

𝑐", 𝑐'

updated

updated

❶ Inspect pair of clusters
❷ Compute benefit-cost ratio

❹ ❺ ❻

❹ ❺ ❻

pair_ratio

Figure 6: Illustration of the Correlation-Aware Variable-
Sized Clustering.

4 After the algorithm merges 𝑐𝑖 and 𝑐 𝑗 , it updates the state of
the clusters and the inverted index as shown below. For the next
iteration, this merged cluster is treated as a single one cluster (𝑐𝑖, 𝑗)
for benefit-cost analysis. In consequence, various sizes of clusters
can be generated by the granularity of one feature.

𝑐𝑖, 𝑗 = { 𝑓𝑘 | 𝑓𝑘 ∈ 𝑐𝑖 ∪ 𝑐 𝑗 }, 𝐼𝑖, 𝑗 = { 𝑞𝑘 | 𝑞𝑘 ∈ 𝐼𝑖 ∪ 𝐼 𝑗 } (3)
By computing benefit and cost, we evaluate benefit-cost ratio

(i.e., 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑐𝑜𝑠𝑡) of all possible pairs of clusters. With the benefit-cost
ratio, we can quantify the effectiveness of every possible merge
of two clusters. If the pair has a high benefit-cost ratio, merging
those clusters increases the benefit of memoization with relatively
low additional memory usage. To summarize, a unique feature
of our clustering scheme is that it selects clusters to merge by
considering the benefits of forming a larger cluster (decrease in
memory accesses) and its cost (increase in memory usage).

4.3 Algorithm Details
Figure 6 illustrates an example walk-through of our Correlation-

Aware Variable-Sized Clustering algorithm with a running example.
First, 1 it inspects every pair of the clusters, and 2 records the
benefit-cost ratio of the merged cluster (i.e., pair_ratio). Then, 3
it selects the cluster pair with the highest benefit-cost ratio (i.e.,
clusters 2 and 3) and merges them into a single cluster. In doing so,
4 it deletes the two original clusters (i.e., 𝑐2 and 𝑐3) and 5 adds the
new aggregated cluster 𝑐5 (= 𝑐2,3). Finally, 6 the cluster pairs and
their ratios are updated along with the inverted index of the merged
cluster. Note that merging two clusters implies that queries with a
feature in either of the two clusters now access the merged cluster
𝑐5. Thus, we set an inverted index of the merged cluster as a union
of two existing inverted indexes (i.e., 𝐼5 = 𝐼2 ∪ 𝐼3). The process of
3 - 6 is repeated with newly updated pair_ratio, treating 𝑐5 as
a single cluster like others. In Figure 6, cluster 4 and 5 are selected
to be merged to become 𝑐6. Although not shown in the figure, the
current memory usage is also updated after a merge. The algorithm
exits if the memory usage reaches the user-specified limit.

Figure 7 presents a pseudocode of the Correlation-Aware Variable-
Sized Clustering algorithm. Function correlation_aware_clus-

tering is the top-level function, which merges clusters until the
current memory usage reaches the user-defined memory limit (i.e.,
CAPACITY_LIMIT) (Line 36). It first calculates the benefit-cost ratios
for all possible pairs of clusters of size one (Line 28-32) by calling
getBCRatio (Line 9-14). It then finds the pair with the maximum
benefit-cost ratio (Line 38) and merges the selected clusters (Line

ASPLOS ’21, April 19–23, 2021, Virtual, USA Lee, et al.

1 struct Cluster{
2 int cid;
3 int size;
4 /* Queries including any feature in this cluster */
5 set<int> I;
6 /* Features in this cluster */
7 set<int> features;
8 }
9 float getBCRatio(Cluster a, Cluster b) {
10 benefit = intersection(a.I, b.I);
11 cost = pow(2, a.size + b.size)
12 − pow(2,a.size) − pow(2,b.size) + 1;
13 return benefit/cost;
14 }
15 Cluster merge(Cluster a, Cluster b, int &nextcid) {
16 /* Merge cluster i and cluster j */
17 Cluster merged;
18 merged.cid = nextcid++;
19 merged.size = a.size + b.size;
20 merged.features = union(a.features, b.features);
21 merged.I = union(a.I, b.I);
22 return merged;
23 }
24 // S: The number of initial clusters(features)
25 def correlation_aware_clustering (set<Cluster> &c):
26 /* Pair of clusters and its benefit-to-cost ratio */
27 map<int, map<int,float>> pair_ratio;
28 /* Initial evaluation of benefit-cost ratio
29 for cluster pairs */
30 for i=0 to S−1:
31 for j=i+1 to S−1:
32 pair_ratio[i][j] = getBCRatio(c[i], c[j]);
33 int nextcid = S;
34 /* Repeat merging until user-specified capacity limit */
35 capacity = S;
36 while (capacity < CAPACITY_LIMIT):
37 /* Returns cluster indices for the maximum ratio */
38 (i, j) = argmax(pair_ratio);
39 /* Merge two selected clusters */
40 Cluster merged = merge(c[i], c[j], nextcid);
41 /* Remove two clusters from c */
42 c.erase(c[i]), c.erase(c[j]);
43 /* Remove pairs containing c[i] or c[j] from pair_ratio*/
44 pair_ratio.erase(c[i].cid), pair_ratio.erase(c[j].cid);
45 /* Update ratios for cluster pairs including merged*/
46 for cl in c:
47 pair_ratio[cl.cid][merged.cid] =
48 getBCRatio(cl, merged);
49 /* Add merged cluster info */
50 c.insert(merged);
51 /* Recompute memory usage here */

Figure 7: Pseudocode of the Correlation-Aware Variable-
Sized Clustering algorithm.

40). Function merge assigns a new ID to the merged cluster and up-
dates its size, features, and inverted index, as discussed before (Line
15-23). Finally, the original cluster pair is erased from the cluster
set (c) and the benefit-cost ratio map (pair_ratio) (Line 41-44),
and the newly merged cluster is inserted with benefit-cost ratios
calculated against all the other clusters (Line 45-50).

4.4 Parallelization of Correlation-Aware
Variable-Sized Clustering Algorithm

By exploiting the super-partition-level parallelism, our clustering
algorithm can be effectively parallelized. However, naïvely sched-
uling each thread to execute on its own super-partition may end
up violating the memory usage constraint without coordination.
Thus, we address this by employing a minimum benefit-cost ratio;

{ 4 } → 001 → 0
{ 5 } → 010 → 1

{ 4, 5 } → 011 → 2
{ 6 } → 100 → 3

{ 4, 6 } → 101 → 4
{ 5, 6 } → 110 → 5

{ 4, 5, 6 } → 111 → 6

❹ Bit vector
0 𝑒(
… ……
14 𝑒(+𝑒"+𝑒%+𝑒&
15 𝑒#
… ……
20 𝑒$+𝑒'
21 𝑒#+𝑒$+𝑒'
22 𝑒)
… …
29 𝑒"(
… …

Memoization Table

❺ Relative loc.

15 13 7 12 8 4 11 3 9 10 2 5 0 6 1 14

3 9 10 2 6 1 14 7 12 8 4 11 15 13 5 0

❸ Combi.

❶ Grouping

❷ Remapping

Group 0 Group 1 Group 2

Group 0
Base Offset

Group 1
Base Offset

Group 2
Base Offset

Meta
data

Base
offset

First
id csize

Group 0 0 0 4
Group 1 15 4 3
Group 2 29 10 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 8: Preprocessing phase of online query processing.

each thread will stop merging once the benefit-cost ratio of the
next merge fails to exceed this minimum ratio, and once clustering
completes for all super-partitions, the total memory consumption
is computed. The minimum ratio is automatically adjusted accord-
ing to the calculated memory consumption, and the process con-
tinues until the expected memory consumption converges to the
user-specified limit. This parallelization technique enables our clus-
tering algorithm to utilize multiple cores in parallel, reducing its
runtime by a significant factor (e.g., 9.7× on a 16-core machine with
32 hardware threads).

5 ONLINE QUERY PROCESSING
This section explains how MERCI utilizes the clusters identified by
the offline clustering scheme in Section 4 to create a table structure
for memoization (Section 5.1). Note that this is a one-time process
performed when new clusters are formed. Then we present how
MERCI exploits this data structure to serve incoming queries for
embedding reduction (Section 5.2).

5.1 Preprocessing
Preprocessing for memoization consists of two steps. First, MERCI
remaps feature IDs to identify the cluster for each feature with only
a few additional memory access. Second, the memoization table
that stores partial reduction for various combinations of embedding
vectors is constructed. Below, we explain each step in detail.
Step 1: Remapping Feature IDs. At runtime, MERCI needs to
identify the cluster that a specific feature within a query belongs
to. The naïve solution would be to maintain a mapping table that
maps each feature ID to a pointer to its cluster information. How-
ever, such an approach will incur additional memory access, since
it is likely that not all mapping tables and data structures contain-
ing information on each cluster are cached. Instead, our approach
statically remaps feature IDs before deployment to minimize the
information needed to access at runtime.

Figure 8 (1 , 2) illustrates the feature ID remapping process. 1
First, clusters with the same size are grouped into a cluster group,
and all cluster groups are sorted by descending order of cluster size.

MERCI: Efficient Embedding Reduction on Commodity Hardware via Sub-query Memoization ASPLOS ’21, April 19–23, 2021, Virtual, USA

Query

… …
26 𝑒)+𝑒*
27 𝑒++𝑒*
28 𝑒)+𝑒++𝑒*
29 𝑒"(

Memoization Table

Group 1 Group 2

0 3 4 6 7 9 12

Meta
data

Base
offset

First
id csize

Group 0 0 0 4
Group 1 15 4 3
Group 2 29 10 2Group 0

= combination offset + cluster offset = 4 + 22 = 26

g.offset + prev_cid × (2g.csize-1)

Group 1 15 4 3

getOffset

features = { 7, 9 }

101% − 1 = 4 = 15 +
. /0
1

× (23 - 1) = 22

Figure 9: Illustration of MERCI query processing.

The order of the clusters within a cluster group is irrelevant. 2
Then, starting from the first feature (ID 3 in the first cluster) to the
last feature (ID 0 in the last cluster), we assign new IDs 0 to N-1 in
order, where N is the total number of features. With this feature
ID remapping, features in the same cluster or a cluster group have
contiguous feature IDs.
Step 2: Memoization Table Construction. Once the remapping
completes, MERCI constructs the memoization table containing
partial sums of all 2𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 − 1 feature combinations in each
cluster. The memoization table is a 2D array (implemented as a 1D
array) storing 𝑅 vectors (𝑅 =

∑
∀𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 (2𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 − 1)), each

having 𝐷 dimensions (i.e., identical to the embedding vector dimen-
sion). This memoization table follows the order of clusters deter-
mined during the feature ID remapping step.

Within a single cluster, we utilize the following mechanism to
determine the partial sum’s location for a specific combination. Fig-
ure 8 (3 - 5) shows a simple example of filling out memoization
table for cluster {4, 5, 6}. 3 First, we generate all possible combina-
tions for every cluster. 4 Then we represent the combination as
a one-hot bit vector whose 𝑘th least significant bit is set when it
contains the 𝑘th feature. For example, a combination of 2nd, 3rd
feature (i.e., {5, 6}) is represented as 110(2) . 5 Then, the integer
representation of this number minus one (except for empty set) is
utilized as the relative offset of the partial sum within the cluster.
This relative offset is then added to the base offset of the cluster to
find the absolute location in the memoization table. For example, in
the figure, seven partial sums are stored in the memoization table
consecutively starting from base offset 15.

To facilitate the retrieval of the partial reduction results during
the runtime, MERCI utilizes a tiny additional metadata array, as
shown in Figure 8. For each cluster group, the base offset within
the memoization table for this cluster group, as well as the first
feature ID and cluster size (csize) of this cluster group are stored.

5.2 Query Processing
When a batch of queries arrive, they are distributed to each thread,
and all threads run a subset of queries in parallel. For each query,
MERCI iterates through features and identifies the clusters they
belong to using remapped feature IDs and the cluster group meta-
data array. If multiple features in a query fall into the same cluster,
this implies an opportunity for partial reduction as their partial
sum is already memoized. Thus, MERCI retrieves sub-query partial
sums for all clusters and calculates final reduction results.

Figure 9 illustrates howMERCI processes a query in detail. Given

1 def getOffset (GroupInfo& g, int prev_cid,
2 vector<int> features):
3 int combi_offset = 0;
4 int first_f = features[0];
5 /* Iterate features for bit vector representation */
6 for f in features:
7 combi_offset |= (1 << (f-first_f));
8 /* Compute cluster offset */
9 int cluster_offset = g.offset
10 + prev_cid*(pow(2, g.csize)-1);
11 return combi_offset + cluster_offset;
12
13 def query_processing (vector<int> query[B],
14 float &res[B][D]):
15 for qid = 0 to B-1:
16 /* Initialize cid & gid with first feature */
17 GroupInfo g = getGroup(query[qid][0]);
18 int prev_cid = (query[qid][0] - g.first_id)/g.csize;
19 int prev_gid = g.gid;
20
21 vector<int> features; // Features in the same cluster
22 for fid in query[qid]:
23 int cid = (fid - g.first_id)/g.csize;
24 /* cluster not changed */
25 if (prev_cid == cid && g.gid == prev_gid):
26 features.push_back(fid);
27 /* cluster changed */
28 else:
29 /* Get memoization table index for features */
30 int offset = getOffset(g, prev_cid, features);
31 for d=0 to D-1:
32 res[qid][d] += memoization_table[offset][d];
33 prev_cid = cid;
34 prev_gid = g.gid;
35 features = {fid};
36 GroupInfo new_g = getGroup(fid)
37 /* Group changed, update group info */
38 if(prev_gid != new_g.gid)
39 g = new_g
40 /* Omitted: Handle the last cluster here */

Figure 10: Query processing pseudocode, omitting the de-
tails for multi-threading.

a query {0, 3, 4, 6, 7, 9, 12}, MERCI processes each feature sequen-
tially starting from first feature in the query (i.e., feature 0). For each
feature, MERCI finds out each feature’s cluster group by compar-
ing its ID with groups’ first IDs in group meta-data array. Figure 9
assumes feature 0, 3, 4 and 6 are already processed, and feature 7
is about to be processed. Feature 7 is in Cluster Group 1 because
ID 7 is less than Group 2’s first ID 10 but greater than Group 1’s
first ID 4. Then, its cluster ID can be obtained by dividing offset
within a cluster group (feature ID - group first ID) by cluster size
(csize) of that group. Hence, Feature 7 is in Cluster 1 (=

⌊
7−4
3

⌋
).

Likewise, Feature 9 is in Cluster Group 1, Cluster 1, and Feature 12
is in Cluster Group 2, Cluster 0. Then, MERCI detects a change in
the cluster and collects previous features in the same cluster ({7, 9})
to calculate the memoization table offset of their reduction. The lo-
cation of cluster’s reduction results (i.e., cluster offset) is computed
by {cluster group base offset} + cluster ID×(2𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 − 1). For
instance, Cluster Group 1, Cluster 1’s cluster offset is 22 (= 15 + 1×
(23 − 1)). The exact offset is cluster offset+combination offset, which
can be obtained by representing the current feature set using a bit
vector, as explained in Section 5.1 and Figure 8.

Figure 10 again shows this process in a pseudocode. Function

ASPLOS ’21, April 19–23, 2021, Virtual, USA Lee, et al.

query_processing stores reduction results of B queries. For fea-
tures in a query, it identifies their cluster group IDs (g.gid) and the
cluster IDs (cid) (Line 23, 36). Then it compares g.gid and cid of
the current feature (fid) with that of the previous feature to collect
features in the same cluster (Line 24-26). If the cluster has changed,
combination offset (Line 3-7) and the previous feature set’s cluster
offset (Line 9) is calculated in function getOffset, and the reduc-
tion result is updated (Line 31-32). Note that the last feature set of
the query needs to be handled after the loop, but we omit that part
for the brevity.

6 DISCUSSION
6.1 Time Complexity of Correlation-Aware

Variable-Sized Clustering
Correlation-Aware Variable-Sized Clustering is performed on each
super-partition, and hence it only considers clusters within the
same super-partition as potential merge candidates. The time com-
plexity of our clustering scheme is 𝑂 (𝑁𝑆 |𝑄 |), where 𝑁 is the num-
ber of embedding vectors (i.e., the number of features), 𝑆 the size of
each super-partition, and |𝑄 | the number of queries in the training
set. For each merge, the scheme needs to evaluate the benefit and
the cost of merging the different pairs of clusters. Here, there exist
at most 𝑆 remaining clusters, and evaluating the benefit of merging
two clusters requires at most |𝑄 | operations as it is simply an inter-
section of two inverted indices whose size is bounded to |𝑄 |. As a re-
sult, each merge requires at most 𝑂 (𝑆 |𝑄 |) operations. In the worst
case, the merge needs to be performed 𝑁 times (i.e., 𝑆 merges for
𝑁 /𝑆 super-partitions), making the total time complexity𝑂 (𝑁𝑆 |𝑄 |).
We have empirically confirmed that a choice of small 𝑆 (e.g., 128) is
nearly as effective as a larger 𝑆 such as 1024, and expect that even
larger 𝑆 does not substantially boost the performance. This implies
that the number of co-appearing features for a single feature does
not exceed 128 on average in the datasets used for evaluation.

If we assume that there was only one super-partition (e.g.,𝑁 = 𝑆),
the time complexity of a single merge becomes 𝑂 (𝑁 |𝑄 |). In the
worst case, the merge needs to be performed for 𝑁 times, meaning
that the time complexity without the hypergraph partitioning step
(Section 4.1) is 𝑂 (𝑁 2 |𝑄 |). This is impractical, especially given that
𝑁 is often an order of millions. Therefore, the step of hypergraph
partitioning is justified to keep the time complexity manageable.

6.2 Capacity Cost
Some large-scale recommendation systems [56, 57] already require
an enormous capacity to store embeddings, and at a glance, it may
seem applying MERCI on such systems is impractical due to the ad-
ditional capacity cost that memoization requires. For such models,
naively using MERCI for all embedding tables may incur an exces-
sive capacity cost. To avoid such a huge capacity cost, we envision
that it is possible to selectively apply MERCI for some embedding
tables (or a subset of a single embedding table) that are i) frequently
accessed, ii) reasonably sized, and iii) have high locality. In fact,
several existing literature state that the large-scale recommenda-
tion model utilizes multiple separate embedding tables [37], and
some embedding tables exhibit higher locality than the others [19].
Furthermore, as explained in Section 4.2, MERCI allows users to
specify the limit of capacity overhead from the memoization table.

Table 1: Dataset analysis.

Name # of
Features

of
Queries

Avg.
Query Len.

Embedding
Tbl. Size

MemTable
Size (+8×)

Synthetic datasets
Synthetic 1 1,000K 1,000K 60.0 244MB 2.08GB
Synthetic 2 1,000K 1,000K 54.0 244MB 2.06GB
Synthetic 3 1,000K 1,000K 51.0 244MB 2.19GB
Synthetic 4 2,000K 2,000K 60.0 488MB 4.18GB
Synthetic 5 2,000K 2,000K 54.0 488MB 4.09GB
Synthetic 6 2,000K 2,000K 51.0 488MB 4.36GB

Real-world datasets
Books 3,187K 32,305K 72.796 568MB 5.20GB
Electronics 759K 10,711K 55.746 115MB 1.06GB
Clothing 2,345K 4,137K 81.953 224MB 2.06GB
Sports 1,506K 5,998K 96.019 196MB 1.75GB
Office Products 599K 3,736K 64.088 85MB 0.73GB
Home&Kitchen 1,806K 11,270K 51.476 248MB 2.23GB
Last.fm 636K 534K 95.611 104MB 0.88GB
DBLP 540K 479K 61.780 102MB 0.87GB

6.3 Handling Embedding Table Updates and
Query Access Pattern Changes

Embedding vectors are known to be frequently retrained every few
hours [19]. In that case, the memoization table needs to be updated
as well. However, the time to update the memoization table is rel-
atively smaller than time to retrain the embedding vectors. And
simply updating the embedding vectors does not require MERCI
to perform offline clustering (i.e., Hypergraph partitioning and
Correlation-Aware Variable-Sized Clustering) again. In contrast,
when the query access pattern changes, hypergraph partitioning
(i.e., Step 1 in 4.1) and clustering (i.e., Step 2 in 4.2) need to be per-
formed again. In practice, this happens much less frequently than
the embedding vector change in many recommender systems. For
all our workloads, clustering and partitioning are completed within
10 minutes with a 16-core machine (the same as in 7). Naturally,
this time can be further reduced with the use of a better machine
or the use of multiple machines.

7 EVALUATION
7.1 Datasets
Real-world Datasets. For the assessment of our algorithm, we uti-
lize popular public datasets for the recommender systems: the Ama-
zon Review dataset (books, electronics, clothing, shoes, and jewelry,
sports and outdoors, office products, and home and kitchen) [28],
Last.fm Million Songs dataset [5], and DBLP Co-Authors Network
dataset [46]. Although it would be ideal to use the feature traces
from actual recommender models such as Facebook DLRM [41],
such production traces are not publicly released.

Each dataset was parsed into a format suitable for our use.
Queries and features were defined in a way they would be in a rec-
ommender system. For instance, in the Amazon Review dataset, we
defined a feature as a product for sale on Amazon, and query as a
group of products (features) a reviewer bought or viewed together.
Then, queries were randomly partitioned into train and test sets
at the ratio of 8:2. Queries in the train set are used by Correlation-
Aware Variable-Sized Clustering to calculate the benefit and cost
during offline clustering, and queries in the test set were utilized

MERCI: Efficient Embedding Reduction on Commodity Hardware via Sub-query Memoization ASPLOS ’21, April 19–23, 2021, Virtual, USA

Synth.1 Synth.2 Synth.3 Synth.4 Synth.5 Synth.6 Synth.
GeoMean

Electro. Clothing Home. Last.fm Books Sports. Office. DBLP Real.
GeoMean Synthetic Datasets Real Datasets

0

50

100

150

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t (
%)

219
Remapped +0.25X +0.5X +1X +8X~

Figure 11: Throughput improvement.

to simulate query processing with the memoization table. Specific
statistics regarding each dataset are delineated in Table 1.
Synthetic Datasets.We also evaluateMERCI on synthetic datasets.
For synthetic dataset generation, we employed a technique named
Stochastic Block Model (SBM) [54], which is a well known approach
for creating a random graph with community structures. We config-
ured the parameters such that 128 features form a single correlative
group, and the total number of features be 𝑁 . Furthermore, each
query comes with an average of 𝑝 features from the same group
and an average of 𝑞 features from different groups. We evaluated
datasets with (p, q) pairs of (48, 3), (48, 6), (48, 12) for 𝑁 = 1𝑀 and
𝑁 = 2𝑀 . Queries are also randomly partitioned into train and test
sets at the ratio of 8:2.

7.2 Methodology
We implemented baseline and MERCI’s embedding reduction op-
eration in C++. In both cases, queries are distributed to multi-
ple threads. We functionally verified the correctness of the imple-
mentation and checked that the baseline implementation achieves
high-performance by confirming that it fully utilizes the system’s
memory bandwidth. MERCI implementation is available at https:
//github.com/SNU-ARC/MERCI. We measured the runtime mostly
on AmazonWeb Services (AWS) EC2m5.8xlarge instance [3], which
provides 16 Intel Xeon Platinum 8259CL CPU cores with 128GiB of
DRAM. We also checked the performance sensitivity to machines
by evaluating MERCI on desktop-class Intel Core i7-10700K CPU
with 64GiB of DRAM. Note that accessing hardware counters is
possible only on the local desktop, but not on the Amazon server.
Thus, we perform energy and LLC miss analysis on the desktop
machine. All evaluations were performed on Ubuntu 18.04 LTS.

7.3 Performance Evaluation
Throughput. Figure 11 delineates the throughput improvement of
MERCI. The x-axis denotes the size of the memoization table over
the original embedding table. We limited the additional memory
usage incurred by MERCI’s memoization table to 0.25, 0.5, 1 and
8 times the size of the original embedding table. Note that MERCI
uses both the original embedding table and the memoization table,
so this implies the pure memory consumption from memoization.
All configurations in the figure (Remapped, +0.25x, +0.5x, +1x, +8x)
hypergraph-partitioned 𝑁 features into super-partitions of size
128. The embedding dimension is set to a constant value of 64 (i.e.,
64 elements per embedding vector), and all measurements were
repeated five times and averaged. Error bars are expressed in red
lines but too minuscule to notice.

The bars labeled Remapped refer to remapped-baseline whose
height denote runtime speedup without memoization. In Remapped,

Syn.1
(1.63)

Syn.2
(1.75)

Syn.3
(1.84)

Syn.4
(1.63)

Syn.5
(1.75)

Syn.6
(1.84)

Elec.
(2.40)

Cloth.
(2.58)

Home.
(2.29)

Last.
(1.83)

Books
(2.07)

Sports.
(2.22)

Office.
(2.32)

DBLP
(3.75)

0

20

40

60

80

100

Fe
at

ur
es

 C
ov

er
ag

e
(%

)

1 2 3 4 5 6+

Figure 12: Feature coverage per memoization size.

the 𝑁 features are hypergraph-partitioned into super-partitions of
size 128 and remapped so that those in the same super-partition are
assigned consecutive IDs. Hence, Remapped shows the pure effect
of locality-aware ID remapping without our clustering algorithm
and memoization. As shown in Figure11, considering locality at
coarse-grained granularity improves by 29%. Clearly, clustering and
memoization give substantial extra speedup on top of ID remapping.

Across all datasets, MERCI manifests significant throughput im-
provement of 62%–262%, and achieves a geomean speedup of 102%
when the memoization table size is at +8×. As shown in the figure,
it is possible to obtain a decent speed up of 52%–160%, and 74% on
average when the table size is limited at +1×. Even for smaller ta-
ble size which is limited at +0.25× and +0.5×, MERCI achieves 60%
and 66% on average, respectively. In general, increasing the mem-
oization table size leads to further speedup, but with diminishing
returns. This is because MERCI first utilizes the capacity for the
most popular co-appearing combinations and then utilizes extra
capacity for the less frequently co-appearing ones.
Memoization Size Analysis. Figure 12 analyzes feature coverage
of memoization table access by memoization size (i.e., the number
of features aggregated together). This is an actual clustering result
that derived the speedup in Figure 11. Each section in a stacked bar
represents the percentage of features covered by a given memoiza-
tion size, summing up to the total number of demanded features
in the test set (i.e.,

∑ |𝑄 |
𝑞𝑖𝑑=1

𝑞𝑢𝑒𝑟𝑦 [𝑞𝑖𝑑] .𝑠𝑖𝑧𝑒 ()). For instance, in the
Amazon Office Products dataset, 18.6% of all features were retrieved
as a reduction of four features, thus quartered table access count
for that portion. On average, 75.4% of features were accessed by
a memoization size greater than one. In the x-axis, the number in
parenthesis indicates the average number of features retrieved per
memoization table access. The result shows that, and single table
access covers from 1.63 to 3.75 features on average.

The figure illustrates that MERCI effectively memoized the em-
bedding table as a large portion of memory accesses reads amassed
features. Even when MERCI retrieves the memoization value of
size 1, it is still superior to the baseline because it benefits from
locality-aware feature ID remapping, as discussed in Figure 11.

https://github.com/SNU-ARC/MERCI
https://github.com/SNU-ARC/MERCI

ASPLOS ’21, April 19–23, 2021, Virtual, USA Lee, et al.

Synth.1 Synth.2 Synth.3 Synth.4 Synth.5 Synth.6 Synth.
GeoMean

Electro. Clothing. Home. Last.fm Books Sports. Office. DBLP Real
GeoMeanSynthetic Datasets Real Datasets

0.2
0.4
0.6
0.8
1.0

No
rm

. M
em

or
y A

cc
es

s Baseline +0.25X +0.5X +1X +8X

Figure 13: Memory access count reduction.

Intel i7 Amazon EC2
0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut

Real Datasets Synthetic Datasets

Synthetic
Datasets

Real
Datasets

0

0.25

0.5

0.75

1.0

No
rm

al
ize

d
En

er
gy

Baseline +0.25X +0.5X +1X +8X

Figure 14: (a) Machine sensitivity (b) Energy consumption.

7.4 Evaluation on Desktop Platform
Machine Sensitivity. Figure 14(a) explores the MERCI perfor-
mance sensitivity on different machine configurations with +8×
memoization table. As shown in Figure 11, MERCI demonstrates
largely similar performance improvements by 102% on the server
system (AWS EC2 m5.8xlarge instance) and 78% on the desktop
system (Intel Core i7-10700K CPU with two memory channels).
The result indicates that MERCI can achieve speedup on any sys-
tem whose embedding reduction performance is bound by mem-
ory bandwidth. Technically, MERCI may not show a performance
improvement on some systems with very abundant memory band-
width and a small number of cores. In practice, however, such sys-
tems are rare as they would heavily underutilize the memory band-
width in many conventional operations.
Energy Savings. Figure 14(b) shows total energy consumption
normalized to baseline energy consumption. We measured energy
consumption with Intel Running Average Power Limit (RAPL) inter-
face [15]. MERCI significantly saves energy consumption by 40.2%
on average (up to 63.5%) at +8× configuration.
Memory Access Count. Figure 13 shows memory access count
(i.e., reads+writes) during MERCI’s query processing normalized to
baseline memory access count. For memory access count measure-
ment, we utilized Intel VTune Profiler [12]. As in previous sections,
memoization table sizes were set at +0.25, +0.5, +1 and +8 times
the original embedding table, and the embedding dimension was
set to a constant value of 64. The graph shows that MERCI’s total
memory access count decreases by 48%, 40% for real and synthetic
datasets at +8× memoization table. MERCI successfully accelerated
memory-bound embedding reduction operation by reducing the
actual count of memory accesses, which decreases as we use more
memory for storing memoization results. We also measured the
memory bandwidth utilization of both the baseline and MERCI us-
ing Intel VTune Profiler. Both systems almost fully utilize the avail-
able memory bandwidth (e.g., 90+% of the theoretical peak band-
width), and this indicates that the memory access reduction shown
in Figure 13 directly translates to the throughput improvement.

8 RELATEDWORK
Frequent Pattern Mining. Frequent pattern mining algorithms
such as apriori [2], FP-growth [25], and DHP [43] algorithm can be
utilized to identify sets of frequently co-appearing features. How-
ever, the main drawback of these algorithms is that they simply
find multiple sets of co-appearing features, allowing a single fea-
ture to belong in multiple sets. In such a case, unlike our cluster-
ing approach, retrieving the reduction results becomes much more
difficult. Specifically, i) identifying the relevant partial sums for a
given query and ii) finding where they are located become serious
challenges. It is our design choice to give up some extra reduction
opportunities for efficient retrieval of partial sums.
Hardware Solutions for the Embedding Reduction. Recently,
Facebook[19, 24, 41, 42], Google[16], and Alibaba[51] emphasize
that embedding reduction is memory-bound and takes a significant
portion of runtime. Several works addressed this problem with
hardware support. For example, [32, 34] adopted near-memory
processing (NMP) architecture to exploit the abundant internal
bandwidth to perform reduction, and only passes the reduction
outcome to the external device through links with lower bandwidth.
Centaur [29] is a chiplet-based hybrid accelerator that also includes
embedding reduction as its target. These solutions report that they
achieve up to an order of magnitude performance improvements
or traffic reductions based on their simulation results. However,
solutions that require hardware support are often expensive. On the
other hand, our proposal is an immediately deployable solution that
provides a substantial speedup at the cost of extra memory capacity.
Feature-aware Optimizations. Bandana [19] utilizes hypergraph
partitioning to place embedding vectors that are likely to be ac-
cessed together in a same 4KB NVM block. Bandana aims to reduce
DRAM capacity consumption under the same number of memory
access count while our work aims to reduce the number of memory
access count itself.
Memoization. Since memoization was first introduced at [38],
memoization is widely adopted as a key technique to accelerate spe-
cific target. COREx[21] scales datacenter accelerators via memoiza-
tion. Specifically, it proposes an accelerator and a storage layer that
memoize and reuse the outcome of previously accelerated computa-
tions when the accelerator needs to compute the same thing. Other
proposals [6, 11, 36, 45, 50] identify computation redundancy caused
by similarities in the input within the various granularity (e.g., in-
struction, function, task level) andmemoize them. Thus these works
avoid processing the same set of instructions and rather replace
such memoized regions with much simpler operations. In [55], they
propose a technique that can be used to accelerate memoization.

MERCI: Efficient Embedding Reduction on Commodity Hardware via Sub-query Memoization ASPLOS ’21, April 19–23, 2021, Virtual, USA

9 CONCLUSION
In this paper, we propose MERCI, a memoization framework that
addresses the memory bandwidth bottleneck of embedding reduc-
tion without distinct hardware support. Embedding reduction is an
accumulative operation that is comprehensively utilized in modern
neural network models and is well-known to be bounded by mem-
ory bandwidth. Its defect is that it does not endorse the correlation
among inputs features and always load embeddings in succession.
Hence, MERCI tackles this complication with memoization. Bol-
stered by our novel clustering scheme, MERCI accelerates embed-
ding reduction by identifying co-appearing features, memoizing
partial reduction of such features, and constructing a memoization
table that supports fast access to memoized values on-demand.

ACKNOWLEDGMENTS
This work was supported by a research grant from SK Hynix and
by research grants from the Korea Government (MSIT): Institute
for Information & communications Technology Promotion (IITP)
grant (2014-0-00035, Research on High Performance and Scalable
Manycore Operating System) and the National Research Founda-
tion of Korea (NRF) grant (NRF-2020R1A2C3010663, Research on
NAND Flash-Based DNN Training System). Tae Jun Ham is the cor-
responding author.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Soft-
ware available from tensorflow.org.

[2] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining
Association Rules in Large Databases. Proceedings of the International Conference
on Very Large Data Bases (VLDB).

[3] Amazon. Amazon EC2 M5 Instances. https://aws.amazon.com/ec2/instance-
types/m5/.

[4] B. Barz and J. Denzler. 2019. Hierarchy-Based Image Embeddings for Semantic
Image Retrieval. In proceedings of IEEE Winter Conference on Applications of
Computer Vision (WACV).

[5] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere.
2011. The Million Song Dataset. In proceedings of the International Conference on
Music Information Retrieval (ISMIR).

[6] I. Brumar, M. Casas, M. Moreto, M. Valero, and G. S. Sohi. 2017. ATM: Approxi-
mate Task Memoization in the Runtime System. In proceedings of IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS).

[7] Miguel Campo, Cheng-Kang Hsieh, Matt Nickens, J. J. Espinoza, Abhinav Taliyan,
Julie Rieger, Jean Ho, and Bettina Sherick. 2018. Competitive Analysis System for
Theatrical Movie Releases Based on Movie Trailer Deep Video Representation.
CoRR abs/1807.04465 (2018).

[8] Ümit V. Çatalyürek and Cevdet Aykanat. 2011. PaToH (Partitioning Tool for
Hypergraphs). In Encyclopedia of Parallel Computing. 1479–1487.

[9] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-Footprint High-Throughput Ac-
celerator for Ubiquitous Machine-Learning. In proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In proceedings of
Workshop on Deep Learning for Recommender Systems (DLRS).

[11] D. A. Conners and W. W. Hwu. 1999. Compiler-directed dynamic computation
reuse: rationale and initial results. In proceedings of the Annual ACM/IEEE Inter-
national Symposium on Microarchitecture (MICRO).

[12] Intel Corporation. Intel VTune Profiler. https://software.intel.com/content/www/
us/en/develop/tools/vtune-profiler.html.

[13] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for
YouTube Recommendations. In proceedings of the ACM Conference on Recom-
mender Systems (RecSys).

[14] W. Bruce Croft, Donald Metzler, and Trevor Strohman. 2010. Search engines:
information retrieval in practice (1st ed.). Addison-Wesley, Boston.

[15] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. 2010. RAPL:
Memory power estimation and capping. ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED).

[16] J. Dean, D. Patterson, and C. Young. 2018. A New Golden Age in Computer
Architecture: Empowering the Machine-Learning Revolution. IEEE Micro 38, 2
(2018).

[17] Karen D Devine, Erik G Boman, Robert T Heaphy, Rob H Bisseling, and Umit V
Catalyurek. 2006. Parallel hypergraph partitioning for scientific computing. In
proceedings of IEEE International Parallel and Distributed Processing Symposium
(IPDPS).

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers) (NAACL).

[19] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey
Pupyrev, Kim M. Hazelwood, Asaf Cidon, and Sachin Katti. 2019. Bandana: Using
Non-Volatile Memory for Storing Deep Learning Models. Proceedings of Machine
Learning and Systems (MLSys).

[20] Facebook. Caffe2. https://caffe2.ai.
[21] Adi Fuchs and David Wentzlaff. 2018. Scaling Datacenter Accelerators with

Compute-Reuse Architectures. In proceedings of the Annual International Sympo-
sium on Computer Architecture (ISCA).

[22] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction.
In proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
Carles Sierra (Ed.).

[23] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-
Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. 2020. Deep-
RecSys: A System for Optimizing End-To-End At-Scale Neural Recommendation
Inference. In proceedings of ACM/IEEE Annual International Symposium on Com-
puter Architecture (ISCA).

[24] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel, K. Hazel-
wood, M. Hempstead, B. Jia, H. S. Lee, A. Malevich, D. Mudigere, M. Smelyan-
skiy, L. Xiong, and X. Zhang. 2020. The Architectural Implications of Facebook’s
DNN-Based Personalized Recommendation. In proceedings of IEEE International
Symposium on High Performance Computer Architecture (HPCA).

[25] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without
Candidate Generation. In proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD).

[26] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In proceedings of the International Symposium on Computer
Architecture (ISCA).

[27] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy,
B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong,
and X. Wang. 2018. Applied Machine Learning at Facebook: A Datacenter Infras-
tructure Perspective. 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[28] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Visual Evo-
lution of Fashion Trends with One-Class Collaborative Filtering. In proceedings
of the International Conference on World Wide Web (WWW).

[29] R. Hwang, T. Kim, Y. Kwon, and M. Rhu. 2020. Centaur: A Chiplet-based, Hybrid
Sparse-Dense Accelerator for Personalized Recommendations. In proceedings of
ACM/IEEE Annual International Symposium on Computer Architecture (ISCA).

[30] Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, Alon Shalita, Yaroslav
Akhremtsev, and Alessandro Presta. 2017. Social Hash Partitioner: A Scalable
Distributed Hypergraph Partitioner. In proceedings of the VLDB Endowment (2017).

[31] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1999. Multi-
level hypergraph partitioning: applications in VLSI domain. IEEE Transactions
on Very Large Scale Integration Systems 7, 1 (1999).

[32] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku
Diril, Amin Firoozshahian, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng
Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail
Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hemp-
stead, and Xuan Zhang. 2020. RecNMP: Accelerating Personalized Recommenda-
tion with Near-Memory Processing. In proceedings of ACM/IEEE Annual Interna-
tional Symposium on Computer Architecture (ISCA).

[33] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. 2015. From
Word Embeddings to Document Distances. In proceedings of the International
Conference on Machine Learning (ICML).

https://aws.amazon.com/ec2/instance-types/m5/
https://aws.amazon.com/ec2/instance-types/m5/
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://caffe2.ai

ASPLOS ’21, April 19–23, 2021, Virtual, USA Lee, et al.

[34] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM: A Practical
Near-Memory Processing Architecture for Embeddings and Tensor Operations
in Deep Learning. In proceedings of IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO).

[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).

[36] Zhenhong Liu, Amir Yazdanbakhsh, Dong Kai Wang, Hadi Esmaeilzadeh, and
Nam Sung Kim. 2019. AxMemo: Hardware-Compiler Co-Design for Approximate
Code Memoization. Proceedings of the 46th International Symposium on Computer
Architecture (ISCA ’19).

[37] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao, Shin-Yeh Tsai, Carole-
Jean Wu, and Mark Hempstead. Understanding Capacity-Driven Scale-Out
Neural Recommendation Inference.

[38] Donald Michie. 1968. “Memo” functions and machine learning. Nature 218, 5136
(1968).

[39] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In proceedings of the International Conference on Neural Information Processing
Systems (NIPS).

[40] Maxim Naumov. 2019. On the Dimensionality of Embeddings for Sparse Features
and Data. CoRR abs/1901.02103 (2019).

[41] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).

[42] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah,
Daya Shanker Khudia, James Law, Parth Malani, Andrey Malevich, Nadathur
Satish, Juan Pino, Martin Schatz, Alexander Sidorov, Viswanath Sivakumar, An-
drew Tulloch, Xiaodong Wang, Yiming Wu, Hector Yuen, Utku Diril, Dmytro
Dzhulgakov, Kim M. Hazelwood, Bill Jia, Yangqing Jia, Lin Qiao, Vijay Rao, Na-
dav Rotem, Sungjoo Yoo, and Mikhail Smelyanskiy. 2018. Deep Learning Infer-
ence in Facebook Data Centers: Characterization, Performance Optimizations
and Hardware Implications. CoRR abs/1811.09886 (2018).

[43] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. 1995. An Effective Hash-Based
Algorithm for Mining Association Rules. In proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD).

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32. 8024–8035.

[45] Stephen E. Richardson. 1992. Caching Function Results: Faster Arithmetic by
Avoiding Unnecessary Computation. Technical Report.

[46] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. AAAI.

[47] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter
Sanders, and Christian Schulz. 2016. K-way hypergraph partitioning via n-level
recursive bisection. In proceedings of Workshop on Algorithm Engineering and
Experiments (ALENEX).

[48] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. CoRR abs/1909.08053 (2019).

[49] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. CoRR abs/1904.06690 (2019).

[50] Tomoaki Tsumura, Ikuma Suzuki, Yasuki Ikeuchi, Hiroshi Matsuo, Hiroshi
Nakashima, and Yasuhiko Nakashima. 2007. Design and Evaluation of an
Auto-Memoization Processor. In proceedings of the IASTED International Multi-
Conference: Parallel and Distributed Computing and Networks (PDCN).

[51] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale Commodity Embedding for E-commerce Recommendation
in Alibaba. CoRR abs/1803.02349 (2018).

[52] P. Wang, Z. Liu, H. Wang, and D. Wang. 2017. Data-centric computation mode
for convolution in deep neural networks. In proceedings of the International Joint
Conference on Neural Networks (IJCNN).

[53] Ruoxi Wang, Bin Fu, Gang Fu, and MingliangWang. 2017. Deep & Cross Network
for Ad Click Predictions. CoRR abs/1708.05123 (2017).

[54] Yuchung J Wang and George Y Wong. 1987. Stochastic blockmodels for directed
graphs. J. Amer. Statist. Assoc. 82, 397 (1987).

[55] Guowei Zhang and Daniel Sanchez. 2019. Leveraging Caches to Accelerate Hash
Tables and Memoization. In proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[56] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun,
and Ping Li. 2020. Distributed Hierarchical GPU Parameter Server for Massive
Scale Deep Learning Ads Systems. arXiv preprint arXiv:2003.05622 (2020).

[57] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.
2019. AIBox: CTR Prediction Model Training on a Single Node. In proceedings of
the ACM International Conference on Information and Knowledge Management
(CIKM).

[58] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-
Through Rate Prediction. In proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining (KDD).

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Embedding Reduction
	2.2 Bottleneck Analysis
	2.3 Opportunities for Sub-query Memoization

	3 MERCI Overview
	4 Offline Clustering
	4.1 Step 1: Hypergraph Partitioning
	4.2 Step 2: Correlation-Aware Variable-Sized Clustering
	4.3 Algorithm Details
	4.4 Parallelization of Correlation-Aware Variable-Sized Clustering Algorithm

	5 Online Query Processing
	5.1 Preprocessing
	5.2 Query Processing

	6 Discussion
	6.1 Time Complexity of Correlation-Aware Variable-Sized Clustering
	6.2 Capacity Cost
	6.3 Handling Embedding Table Updates and Query Access Pattern Changes

	7 Evaluation
	7.1 Datasets
	7.2 Methodology
	7.3 Performance Evaluation
	7.4 Evaluation on Desktop Platform

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

