
Layerweaver: Maximizing Resource Utilization of
Neural Processing Units via Layer-Wise Scheduling

Young H. Oh∗ Seonghak Kim† Yunho Jin† Sam Son† Jonghyun Bae†

Jongsung Lee† Yeonhong Park† Dong Uk Kim† Tae Jun Ham† Jae W. Lee†

∗Department of Electrical and Computer Engineering †Department of Computer Science and Engineering
Sungkyunkwan University, Suwon, Korea Neural Processing Research Center (NPRC)

Seoul National University, Seoul, Korea
∗younghwan@skku.edu †{ksh1102,yhjin0509,sosson97,jonghbae,leitia,ilil96,dongukim12,taejunham,jaewlee}@snu.ac.kr

Abstract—To meet surging demands for deep learning in-
ference services, many cloud computing vendors employ high-
performance specialized accelerators, called neural processing
units (NPUs). One important challenge for effective use of NPUs is
to achieve high resource utilization over a wide spectrum of deep
neural network (DNN) models with diverse arithmetic intensities.
There is often an intrinsic mismatch between the compute-to-
memory bandwidth ratio of an NPU and the arithmetic intensity
of the model it executes, leading to under-utilization of either
compute resources or memory bandwidth. Ideally, we want to
saturate both compute TOP/s and DRAM bandwidth to achieve
high system throughput. Thus, we propose Layerweaver, an infer-
ence serving system with a novel multi-model time-multiplexing
scheduler for NPUs. Layerweaver reduces the temporal waste
of computation resources by interweaving layer execution of
multiple different models with opposing characteristics: compute-
intensive and memory-intensive. Layerweaver hides the memory
time of a memory-intensive model by overlapping it with the
relatively long computation time of a compute-intensive model,
thereby minimizing the idle time of the computation units waiting
for off-chip data transfers. For a two-model serving scenario
of batch 1 with 16 different pairs of compute- and memory-
intensive models, Layerweaver improves the temporal utilization
of computation units and memory channels by 44.0% and 28.7%,
respectively, to increase the system throughput by 60.1% on
average, over the baseline executing one model at a time.

Keywords-Layer-wise Scheduling, Systems for Machine Learn-
ing, Inference Serving System, Neural Networks, Accelerator
Systems, Multi-tasking

I. INTRODUCTION

With widespread adoption of deep learning-based appli-
cations and services, computational demands for efficient
deep neural network (DNN) processing have surged in data-
centers [1]. In addition to already popular services such as
advertisement [2], [3], social networks [4]–[7], and personal
assistants [8], [9], emerging services for automobiles and IoT
devices [10]–[12] are also attracting great attention.

To accelerate key deep-learning applications, datacenter
providers widely adopt high-performance serving systems [13]–
[16] based on specialized DNN accelerators, or neural process-
ing units (NPUs) [17]–[19]. Such accelerators have a massive
amount of computation units delivering up to several hundreds

of tera-operations per second (TOP/s) as well as hundreds
of giga-bytes per second (GB/s) DRAM bandwidth. NPUs
targeting only inference tasks feature a relatively high compute-
to-memory bandwidth ratio (TOP/GB) [18], [20], whereas those
targeting both inference and training a much lower ratio due
to their requirement for supporting floating-point arithmetic,
which incurs larger area and bandwidth overhead.

Due to a wide spectrum of arithmetic intensities of DNN
models, there is no one-size-fit-all accelerator that works well
for all of them. For example, convolutional neural networks
(CNNs) [21]–[23] are traditionally known to be most compute-
intensive. In contrast, machine translation and natural language
processing (NLP) models [4], [24]–[26] are often composed of
fully-connected (FC) layers with little weight reuse to be more
memory-intensive. To first order, the computational structure
of a DNN model determines its arithmetic intensity, and hence
its suitability to a particular NPU.

Even if the arithmetic intensity of a DNN model is perfectly
balanced with the compute-to-memory ratio of the NPU, it is
still challenging to fully saturate the hardware resources. One
such difficulty comes from varying batch size at runtime. For
example, the dynamic fluctuation of user requests towards a
DNN serving system [13], [15], [16] or application-specified
batch size from cameras and sensors in an autonomous driving
system [10], [27] mandates the system to run on a sub-
optimal batch size. Thus, the batch size is often highly
workload-dependent and not freely controllable to make it
nearly intractable to build a single NPU maintaining high
resource utilization for all such workloads.

For an NPU required to run diverse DNN models, a mismatch
between its compute-to-memory bandwidth ratio and the
arithmetic intensity of the model being run can cause a serious
imbalance between compute time and memory access time.
This yields a low system throughput due to under-utilization of
either processing elements (PEs) or off-chip DRAM bandwidth,
which in turn translates to the cost inefficiency in datacenters.
Once either resource gets saturated (while the other resource is
still available), it is difficult to further increase the throughput
without scaling the bottlenecked resource in NPU.

PE Array

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

R
egisters

Compute (TOP/s)On-chip Buffers (MB)

G
lobal Shared Buffers

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

PE
Array

O
ff-chip D

R
AM

Memory Bandwidth
(GB/s)

NoC Bandwidth
(GB/s)

Fig. 1. An abstract single-chip NPU architecture.

To improve resource utilization of the NPU, latency-hiding
techniques such as pipelining [28]–[30], decoupled memory
access and execution [31] have been proposed. These tech-
niques overlaps compute time with memory access time by
fetching dependent input activations and weights from the off-
chip memory while performing computation. While mitigating
the problem to a certain extent, the imbalance between compute
and memory access time eventually limits their effectiveness.
To eliminate the memory bandwidth bottleneck, one popular
approach is to employ expensive high-bandwidth memory
technologies such as HBM DRAM. However, this abundant
bandwidth is wasted when running compute-intensive models
(like CNNs). On the other hand, small-sized NPUs traditionally
count on double buffering [32], [33] and dataflow optimization
to minimize off-chip DRAM accesses [34]–[36].

Instead, we take a software-centric approach that exploits
concurrent execution of multiple DNN models with opposite
characteristics to balance NPU resource utilization. To this
end, we propose Layerweaver, an inference serving system
with a novel time-multiplexing layer-wise scheduler. The
low-cost scheduling algorithm searches for an optimal time-
multiplexed layer-wise execution order from multiple hetero-
geneous DNN serving requests. By interweaving the execution
of both compute- and memory-intensive layers, Layerweaver
effectively balances the temporal usage of both compute and
memory bandwidth resources. Our evaluation of Layerweaver
on 16 pairs of compute- and memory-intensive DNN models
demonstrates an average of 60.1% and 53.9% improvement
in system throughput for single- and multi-batch streams,
respectively, over the baseline executing one model at a time.
This is attributed to an increase in temporal utilization of PEs
and DRAM channels by 44.0% (22.8%) and 28.7% (40.7%),
respectively, for single-batch (multi-batch) streams.

Our contributions are summarized as follows.
• We observe the existence of a significant imbalance between

the compute-to-memory bandwidth ratio of an NPU and the
arithmetic intensity of DNN models to identify opportuni-
ties for balancing the resource usage via layer-wise time-
multiplexing of multiple DNN models.

• We devise a novel time-multiplexing scheduler to balance the
NPU resource usage, which is applicable to a wide range of
NPUs and DNN models. The proposed algorithm computes

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

PE
D

R
AM

(a) ResNeXt50 (RX)

0.0 0.5 1.0 1.5 2.0 2.5

PE
D

R
AM

(b) BERT-large (BL)

Fig. 2. Layer-wise execution timeline on a unit-batch (batch 1) input in
milliseconds with (a) compute-intensive and (b) memory-intensive workload.

the resource idle time and selects the best schedules within a
candidate group of layers. For this reason, Layerweaver finds
a near-optimal schedule that achieves better performance than
heuristic approaches.

• We provide a detailed evaluation of Layerweaver using
16 pairs of state-of-the-art DNN models with two realistic
inference scenarios. We demonstrate the effectiveness of
Layerweaver for increasing system throughput by eliminating
idle cycles of compute and memory bandwidth resources.

II. BACKGROUND AND MOTIVATION

A. Neural Processing Units

While GPUs and FPGAs are popular for accelerating DNN
workloads, a higher efficiency can be expected by using
specialized ASICs [17], [18], [29], [37], or neural processing
units (NPUs). Figure 1 depicts a canonical NPU architecture.
A 2D array of processing elements (PE) are placed and
interconnected by a network-on-a-chip (NoC), where each
PE array has local SRAM registers. There are also globally
shared buffers to reduce off-chip DRAM accesses.

Recently, with ever growing demands for energy-efficient
DNN processing, specialized accelerator platforms have been
actively investigated for both datacenters [8], [20], [38], [39]
and mobile/IoT devices [12], [40]–[43]. Depending on the
application each request may be a single input instance or
mini-batch with multiple instances. When a request arrives
at the host device to which an NPU is attached, it transfers
model parameters and input data to the device-side memory
via the PCIe interface (or on-chip bus in an SoC). Then the
NPU fetches the data and commences inference computation.

B. DNN Model Characteristics

The characteristics of a DNN is determined by the char-
acteristics of the layers it comprises. For convolution neural
networks (CNNs), convolution layers typically take up the
most of the inference time with the remaining time spent on
batch normalization (BN), activation, fully-connected (FC),
and pooling layers. In a convolution layer most of the data
(activations and filter weights) are reused with a sliding
window, so it has a very high compute-to-memory bandwidth
ratio (i.e., highly compute-intensive). Figure 2(a) shows an
example execution timeline of ResNeXt50 [21], where PEs

2

10

100

1000

10000

1 2 4 8 16

O
P/

By
te

Batch Size

BB BL NCF XL IC MN RN RX

TPUv3

Eyeriss

Goya
NNP-I
Cambricon

Comp-
centric

Mem-
centric

Fig. 3. Compute-to-memory bandwidth ratios across varying batch sizes.
Arithmetic intensity (Number of operations divided by off-chip access bytes)
is measured for DNN models. Peak TOPS is divided by peak off-chip DRAM
bandwidth for NPUs.

are very heavily used while DRAM bandwidth is under-
utilized. In contrast, most neural language processing (NLP)
and recommendation models are dominated by fully-connected
(FC) layers which have little reuse of weight data. Thus, the
FC layer has memory-intensive characteristics. As shown in
Figure 2(b), BERT-large [24] has high utilization of off-chip
DRAM bandwidth but much lower utilization of PEs.

C. NPU Resource Under-utilization Problem

Compute-centric vs. Memory-centric NPUs. In a datacenter
environment NPUs are generally capable of servicing multiple
requests at once as service throughput is an important measure.
In contrast, in a mobile environment, NPUs are often required
to provide a low latency for a single request to not degrade user
experience. As such, depending on the requirements from the
target environment, NPUs have varying compute-to-memory
bandwidth ratios.

Figure 3 overlays the arithmetic intensity of eight popular
DNN models with the compute-to-memory bandwidth ratio
of five NPUs while varying the batch size of the input. The
following four of the eight models are known to be compute-
intensive: InceptionV3 (IC) [44], MobileNetV2 (MN) [45],
ResNet50 (RN) [22] and ResNeXt50 (RX) [21]. The remaining
four models are memory-intensive: BERT-base (BB), BERT-
large (BL) [24], NCF (NCF) [26] and XLNet (XL) [25].
Furthermore, we also classify five NPUs into compute-centric
designs [18], [19], [46], which has a relatively high compute-
to-memory bandwidth ratio, and memory-centric designs [17],
[34], which is characterized by a low ratio. If a compute-
intensive model (e.g., ResNeXt50) is executed on a memory-
centric NPU (e.g., TPUv3), the memory bandwidth resource is
likely to be under-utilized (i.e., bottlenecked by PEs) to yield
sub-optimal system throughput.
Imbalance between DNN Model and NPU. There is a
wide spectrum of NPUs and DNN models to make it nearly
impossible to balance the NPU resources with the requirements
from all DNN models to execute. In Figure 3, for a given NPU,
the farther the distance from the horizontal line of the NPU
to the arithmetic intensity of the workload, the greater degree
of imbalance exists to yield poor resource utilization of either
PEs or DRAM bandwidth. If the arithmetic intensity of the
DNN model in question is above the horizontal line of the
NPU, DRAM bandwidth is under-utilized, or vice versa.

0
20
40
60
80

100

IC MN RN RX BB BL NCF XL IC MN RN RX BB BL NCF XL

Computing utilization Memory utilization

Ac
tiv

e
cy

cl
es

 (%
) Batch 1 Batch 16

0
20
40
60
80

100

IC MN RN RX BB BL NCF XL IC MN RN RX BB BL NCF XL

Computing utilization Memory utilization

Ac
tiv

e
cy

cl
es

(%
) Batch 1 Batch 16

PE utilization
Mem-intensiveComp-intensive

DRAM BW utilization

(a) Memory-centric NPU

Mem-intensiveComp-intensive

PE utilization
Mem-intensiveComp-intensive

DRAM BW utilization
Mem-intensiveComp-intensive

(b) Compute-centric NPU

Fig. 4. Normalized active cycles of compute-centric and memory-centric
NPUs on various DNN models.

Figure 4 characterizes the resource utilization in greater
details. The two bars for each DNN model shows normalized
active cycles (i.e., temporal utilization) of both resources for
unit-batch (batch 1) and multi-batch (batch 16) inputs, respec-
tively. We use both compute-centric (NNP-I) and memory-
centric NPUs (TPUv3) in Figure 4(a) and (b). The details of
this experimental setup is available in Section IV-A.

In Figure 4(a), the memory-centric NPU (TPUv3-like) under-
utilizes DRAM bandwidth for compute-intensive models and
PE resources of memory-intensive models at the unit batch
(batch 1, white bars). This under-utilization is explained by
the large gap between the horizontal line of the NPU and the
DNN arithmetic intensity. However, at batch 16 (gray bars),
memory-intensive DNN models show high PE utilization and
lower DRAM bandwidth utilization compared to unit batch size
except for NCF, which is extremely memory-intensive, due to
an increase in the arithmetic intensity. Figure 3 shows that the
points of the memory-intensive workloads are located above
the horizontal line except NCF. Still, the compute-intensive
models show very low DRAM bandwidth utilization.

In Figure 4(b), the compute-centric NPU (NNP-I-like)
shows opposite results. Some compute-intensive workloads
demonstrate relatively low PE utilization because of insufficient
computations at the unit batch. However, with batch 16, now
DRAM bandwidth is under-utilized while PE resources are
fully saturated. Conversely, in the case of memory-intensive
workloads, PE resources are still not fully saturated even at
batch 16 as DRAM bandwidth gets saturated first.

III. LAYERWEAVER

A. Overview

The analysis in Section II-C implies that (i) either PE or
DRAM bandwidth resources (or both) may be under-utilized
due to a mismatch between the arithmetic intensity of a DNN
model and the compute-to-memory bandwidth ratio of the NPU;
(ii) the imbalance of resource usage cannot be eliminated by
simply adjusting the batch size of a single DNN model. Thus,
we propose to execute two different DNN models with opposite

3

Time

Model 1
Model 2

DRAM

PE
(a)

(b)
DRAM

PE

Fig. 5. A timeline with different scheduling. Based on decoupled memory
system, (a) illustrates the schedule without reordering and (b) with reordering.

characteristics via layer-wise time-multiplexing to balance the
resource usage for a given NPU.

Figure 5 illustrates how interweaving the layers of two
heterogeneous DNN models can lead to balanced resource
usage. In this setup we assume that the DNN serving system
needs to execute two hypothetical 3-layer models, a compute-
intensive one (Model 1) and a memory-intensive one (Model 2).
The baseline schedule in Figure 5(a) does not allow reordering
between layers. During the execution of Model 2, the PE time
is under-utilized, whereas during the execution of Model 1, the
DRAM time is under-utilized. However, by reordering layers
across the two models appropriately as in Figure 5(b), the
two models as a whole utilize both PE and DRAM bandwidth
resources in a much more balanced manner.
Challenges for Efficient Layer-wise Scheduling. Determin-
ing an efficient schedule to fully utilize both compute and
memory resources is not a simple task. It would have been
very easy if the on-chip buffer had an infinite size. In such a
case, simply prioritizing layers having longer compute time
than memory time would be sufficient to maximize compute
utilization as the whole memory time will be completely hidden
by computation. However, unfortunately, the on-chip buffer
size is very limited, and thus one needs to carefully consider
the prefetched data size as well as the remaining on-chip buffer
size. This is because prefetching too early incurs memory idle
time as described in the “Memory Idle Time” paragraph in
Section III-D.
Layerweaver. Layerweaver is an inference serving system with
a layer-wise weaving scheduler for NPU. The core idea of
Layerweaver is to interweave multiple DNN models of opposite
characteristics, thereby abating processing elements (PEs) and
DRAM bandwidth idle time. Figure 6 represents the overall
architecture of Layerweaver. The design goal of Layerweaver
is to find a layer-wise schedule of execution that can finish
all necessary computations for a given set of requests in the
shortest time possible.
Deployment. Layerweaver is comprised of a request queue,
scheduler, and NPU hardware for inference computing. It
could be often integrated with a cloud load balancer that
1 directs the proper amount of inference queries for each

compute- and memory-intensive models to a particular NPU
instance [16], [47]–[49]. Such load-balancers are important in
existing systems as well since supplying an excessive number of
queries to a single NPU instance can result in an unacceptable
latency explosion. 2 Once request queues of Layerweaver
accepts the set of requests for each model, 3 the host processor

Off-chip DRAM

Host Processor NPU

Greedy
Scheduler

Commands

Finish any?

PCIe

Req. Q

Other Workers

M
2

C
2

C
1

M
1

Max window

Load
Balancer

Request Streams

Feedback

Comp. int.

Mem. int.❶
❷

❸

❹

❺

❻

NPU Core

Global Buf.❼

Interweaved
µ-inst. Stream

(Appended)

Fig. 6. A baseline NPU-incorporated serving system.

dequeues a certain number of requests from each queue and
pass them to the scheduler. And then, 4 the host processor
invokes Layerweaver scheduler and performs the scheduling. 5
Following the scheduling result, the host processor dispatches
those scheduled layers to NPU by appending to activated
instruction streams. 6 Depending on the scheduling results,
one of two request queues may have higher occupancy. In
that case, it is reported to the cloud load balancer so that the
load balancer can utilize this information for the future load
distribution. Finally, 7 NPU executes those instructions, and
once it finishes handling a single batch of requests, it returns
the result to the host processor. Note that Layerweaver employs
a greedy scheduler (see the next section), and thus only needs
information about the one next layer for each model.
Baseline NPU. There exist many different types of NPUs with
their own unique architecture. However, Layerweaver is not
really dependent on the specific NPU architecture. Throughout
the paper, we assume a generic NPU that resembles many of
the popular commercial/academic NPUs such as Google Cloud
TPUv3 [17] or Intel NNP-I [18]. This generic NPU consists
of compute units (PEs), and two shared on-chip scratchpad
memory buffers, one for weights and one for activations. The
host controls this NPU by issuing a stream of commands such
as fetching data to on-chip memory or performing computation.
Once the NPU finishes computation, it automatically frees the
consumed weights, and stores the outcome at the specified
location of the activation buffer. One important aspect is that
the NPU processes computation and main memory accesses
in a decoupled fashion. The NPU eagerly processes fetch
commands from the host by performing weight transfers from
its main memory to the on-chip weight buffer as long as the
buffer has empty space. In a similar way, its processing unit
eagerly processes computation commands from the host as
long as its inputs (i.e., weights) are ready.

Supporting the layer-wise interweaving in this baseline
NPU does not require an extension. In fact, the NPU does
not even need to be aware that it is running layers from
different models. The host can run Layerweaver scheduler
to obtain the effective layer-wise interweaved schedule, and
then simply issue commands corresponding to the obtained
schedule. Unfortunately, we find that existing commercial NPUs
do not yet expose the low-level API that enables the end-user
to directly control the NPU’s scratchpad memory. However,
it is reasonable to assume that such APIs are internally
available [17], [20], [50]. In this case, we believe that the
developer can readily utilize Layerweaver on the target NPU.

4

B. Greedy Scheduler

The main challenge of finding an optimal layer-wise schedul-
ing is the enormous size of the scheduling search space. Brute-
force approach naturally leads to a burst of computation cost.
For example, to find the optimal schedule for a model set
consisted of ResNet50 and BERT-base, which has 53 and 75
layers respectively, 128C53 (' 4× 1036) candidate schedules
should be investigated, which is not feasible. Note that the
previous work [51] uses simplified heuristics to manage the
high search cost, while Layerweaver presents a way to formally
calculate the exact idle time of each resource and maximize
the total resource utilization.

To determine suitable execution order of layers for k different
models within a practically short time, the scheduler adopts
a greedy layer selection approach. It estimates computation
and memory idle time incurred by each candidate layer then
selects a layer showing the least idle time as the next scheduled
layer. Here, the algorithm maintains a candidate group and
only considers layers in the group to be scheduled next. For
one model, a layer belongs to the group if and only if it is
the first unscheduled layer of the model. Assuming that an
inspection of a single potential candidate layer takes O(1)
time, the complexity for making a single scheduling decision
is O(k). Assuming that this process is repeated for N layers,
the overall complexity is O(kN) for N layers.
Profiling. Before launching the scheduler, Layerweaver re-
quires to profile a DNN model to identify computation time,
memory usage, and execution order of each layer. This profiling
stage simply performs a few inference operations and then
records information for each layer L of the model. Specifically,
it records the computation time L[comp], and the number
of weights that this layer needs to fetch from the memory
L[size]. Finally, such pairs are stored in a list M following the
original execution order. Since most NPUs have a deterministic
performance characteristic, offline profiling is sufficient.
Greedy Scheduler. Figure 7 shows the working process of
the scheduler. We assumed NPU running Layerweaver has
BufSize sized on-chip buffer and MemBW off-chip memory
bandwidth. It maintains three auxiliary data structures during
its run. The algorithm selects one layer from the candidate
group and append it to the end of curSchedule every step,
and this data structure is the outcome of Layerweaver once
the algorithm completes. indexWindow represents the indexes
of layers in the candidate group of each model to track the
layer execution progress correctly. Lastly, schedState keeps
several information representing the current schedule.

For each step the algorithm determines the next layer to
be scheduled among candidates. First, the algorithm con-
structs candidateGroup from indexWindow. Then, for each
candidate layer UpdateSchedule function computes how the
NPU state changes if a candidate layer is scheduled as
described in Section III-C. Updated schedule states are stored
in stateList. Next, Select function examines all schedule
states in stateList and estimates the idle time of each updated
schedule state, which will be further elaborated in Section III-D.

1 def Schedule(M0, . . ., Mk−1):
2 totalSteps =

∑
i=0,...,k−1(len(Mi))

3 curSchedule = []
4 indexWindow = [0, . . ., 0] # length k
5 schedState = [tm : 0, tc : 0, l :[]]
6 for step in range(totalSteps):
7 # checks for pause
8 for i in range(k):
9 CheckEnd(indexWindow[i], Mi)

10 # one scheduling step
11 candidateGroup = [Mi[idx] for (i, idx) in

enumerate(indexWindow)]
12 stateList = []
13 for modelNum in range(k):
14 # schedule state update
15 newSchedState = UpdateSchedule(schedState,

candidateGroup[modelNum])
16 stateList.append(newSchedState)
17 # layer selection
18 schedState, selectedIdx = Select(schedState,

stateList, candidateGroup)
19 curSchedule.append(candidateGroup[selectedIdx])
20 indexWindow[selectedIdx]++
21 return curSchedule

Fig. 7. Greedy layer schedule algorithm.

1DRAM
1

2
2

Time

Already Sched.
Newly Sched.

3
3

5
5

tm

tc4
4

S[l][0] = (L3[size], t0)

t0 S[l][2] = (L5[size], S[tc])t1
S[l][1] = (L4[size], t1)

S[l] = [L3, L4, L5]
PES

Fig. 8. Schedule state of an example schedule S.

It selects the layer having the shortest idle time as the next
scheduled layer, which is appended to curSchedule.

At the beginning of every step, CheckEnd function checks
indexWindow[] to see if scheduling of any model is completed
(i.e., all of its layers are scheduled). If so, the scheduler is
paused and scheduled layers up to this point (as recorded
in curSchedule) are dispatched to NPU. Just before the
completion of execution, the scheduler is awoken and continues
from where it left off. CheckEnd then probes the request queue
in search of any remaining workload. If there is nothing left,
the scheduler is terminated. If there are additional requests
queued, they are appended to existing requests of the same
model, if any. And then the scheduler resumes.

C. Maintaining and Updating Schedule State

This section provides intricate detail of UpdateSchedule

(Line 15 in Figure 7). The function explores the effect of
scheduling a layer in the candidateGroup on the overall
schedule and pass the information to select.
Concept of Schedule State. Layerweaver maintains the state
for a specific schedule S. This state consists of three ele-
ments: compute completion timestamp S[tc], communication
completion timestamp S[tm], and a list S[l] containing
information about already scheduled layers that are expected
to finish in a time interval (S[tm], S[tc]]. Specifically, the
list S[l] consists of pairs where each entry (S[l][j].size,
S[l][j].completion) represents the on-chip memory usage
and the completion time of the jth layer in the list, respectively.
Figure 8 illustrates an example schedule and elements com-

5

1 # called by UpdateSchedule
2 def ScheduleMemFetch(S, L):
3 sizeToFetch = L[size]
4 remainingBuf = BufSize -

∑
jS[l][j].size

5 curTime = S[tm]
6 if sizeToFetch <= remainingBuf:
7 return curTime + sizeToFetch / MemBW
8 else:
9 curTime = curTime + remainingBuf / MemBW
10 sizeToFetch -= remainingBuf
11 for j in range(len(S[l])):
12 if curTime < S[l][j].completion:
13 curTime = S[l][j].completion
14 if sizeToFetch < S[l][j].size:
15 return curTime + sizeToFetch / MemBW
16 else:
17 sizeToFetch -= S[l][j].size
18 curTime = curTime + S[l][j].size / MemBW

Fig. 9. Scheduling Memory Fetch for Layer L on Schedule S. BufSize
represents the on-chip buffer capacity, and MemBW represents the system’s
memory bandwidth.

posing its state. Below, we discuss how scheduling a specific
layer L changes the each element of the schedule state.
Scheduling Memory Fetch. Figure 9 shows the process of
scheduling the memory fetch represented in pseudocode. If the
layer L’s memory size L[size] is smaller than the amount of
available on-chip memory at time S[tm], the memory fetch can
simply start at S[tm] and finish at S[tm] + L[size]/MemBW
(Line 7). This case is shown in Figure 10(a). However, if
the amount of available on-chip memory at time S[tm] is not
sufficient, this becomes trickier, as shown in Figure 10(b). First,
a portion of L[size] that fits the currently remaining on-chip
memory capacity is scheduled (Line 9). Then, the remaining
amount (i.e., sizeToFetch in Line 10) is scheduled when the
computation for a layer in list S[l] completes and frees the
on-chip memory. For this purpose, the code iterates over list
S[l]. For each iteration, the code checks if the jth layer in
the list has completed by the time that previous fetch has
completed (Line 12). If so, it immediately schedules a fetch
for the freed amount (Line 14-18). If not, it waits until this
layer completes and then schedules a fetch (Line 16-18). This
process is repeated until L[size] amount of data is fetched.
The returned value of the algorithm is S’[tm].
Scheduling Computation. Once the memory fetch ends, the
computation for layer L can be scheduled. Here, there are
two different cases. In the first case (Figure 11(a)), the
previous schedule’s computation has not ended by the time
that memory fetch completes (i.e., S[tc] > S’[tm]). In this
case, computation is scheduled on time S[tc] and completes at
S[tc] + L[comp]. On the other hand, if the previous schedule’s
computation has ended before the time that memory fetch for
the current layer completes (i.e., S[tc] < S’[tm] as shown
in Figure 11(b)), the compute needs to start on time S’[tm]

(since it is dependent on the fetched memory), and completes
at S’[tm] + L[comp]. The following equation summarizes the
process of obtaining S’[tc].

S’[tc] = max(S[tc], S’[tm]) + L[comp]

Updating S[l]. Finally, S[l] needs to be updated accordingly.
To obtain S’[l], all layer j in S[l] whose completion time

S(tm)

1
1

2
(a)

3 4DRAM
PE

S

S’

1
1

2
(b)

S’(tm)
3 4DRAM

PE
S’

Time

Remaining
Buffer Size MemBW

3

3
4

/
1

1
2 3DRAM

PE 3

Already Sched. Newly Sched. Memory Idle Time

2

2

S’(tm)

2

Fig. 10. Visualization of memory fetch scheduling.

DRAM

S(tm)

(a)

1
1

32
PE 2

DRAM
PE

S

S’
S’(tc)1

1
32

2
4

(b) 1
32

2 4’

S’(tm)

S(tc)

S’(tc)DRAM
PES’

Time

3

1

Already Sched. Newly Sched. Compute Idle Time

4’

S’(tm)

3 4

3

Fig. 11. Visualization of computation scheduling.

is before S’[tm] are excluded. Then, the current layer L is
appended to S[l].

D. Selecting a Layer to Schedule

The goal of Layerweaver scheduler is clear: maximize both
the PE utilization, and the DRAM bandwidth utilization (i.e.,
bandwidth utilization of off-chip memory links). To effectively
achieve this goal, the scheduler should execute the layer that
incurs the shortest compute or memory idle time. Here, we
explain how Layerweaver estimates the amount of compute or
memory idle time incurred if layer L is scheduled following
the current schedule S by Select.
Decoupling Distance. For a schedule S, its decoupling
distance is defined as S[tc] - S[tm]. And maintaining an
appropriate decoupling distance is important. If this distance
is too large, it means that the prefetch is happening far before
the fetched values are actually used resulting in memory idle
time as on-chip buffers have a finite size (Figure 10(b)). On
the other hand, if this value is too small, it means that the
prefetch is happening right before the fetched values are used,
leading to compute idle time (Figure 11(b)). In what follows
we cover both cases in greater details.
Compute Idle Time. This occurs when the decoupling distance
(i.e., S[tc] - S[tm]) is smaller than L[size] / MemBW. In this
case, memory fetch cannot finish within the decoupling distance,
and PEs should wait until the memory fetch is completed
(Figure 11(b)). The idle time can be computed as follows.

L[size] / MemBW - (S[tc] - S[tm])

6

DRAM

S[tm]
S[tc]

(a)

1
1
2

Already Sched. Newly Sched.

PE 2

DRAM
PE

S

S’
S’[tc]

(b)

1
1
2

2
3

3

On-chip buf. full

1
1
2

2

S’[tm]

DRAM
PE

S’

Time

4 5

Will be Sched.

3
3 4 5 S’[tc]

On-chip buf. full
S’[tm]

Memory Idle Time (from Scheduling) Memory Idle Time (Inherent)

fetch(S’[tm], S[tc])/MemBW

Fig. 12. Illustration of the memory idle time.

Memory Idle Time. Identifying the amount of memory idle
time incurred from a scheduling decision is trickier. This is
because the timeline of the current schedule does not actually
show the memory idle time. Figure 12(a) shows an example
case illustrating a scheduling decision that incurs large memory
idle time. In this case, a layer L with the very large compute
time (i.e., L[comp]) is scheduled. Unfortunately, the resulting
decoupling distance is so large and exceeds the amount of time
it takes to completely fill the on-chip buffer with the assumed
system memory bandwidth. In such a case, regardless of a
layer scheduled following the current layer, the hatched area
of the timeline (i.e., L[comp] - (BufSize - L[size]) / MemBW)
remains as memory idle time. However, one should note that
this is not the result of the scheduling decision. Rather, this is
a layer’s inherent characteristic because such a memory idle
time occurs regardless of the point that this layer is scheduled.

Still, this does not mean that one can schedule such a layer
anywhere without any implication. Figure 12(b) shows a more
general case where S’[tm] is not equal to S[tc]. In this case,
the same memory idle time exists. However, the situation is
worse here, because more fetch operations (for the next layers)
will be scheduled in a time interval (S’[tm], S[tc]). By the
time S[tc], the amount of available on-chip buffer may be
much lower than that of Figure 12(a) (i.e., BufSize - L[size]).
Say that the amount of memory fetch operations that will be
scheduled in a time interval (S’[tm], S[tc]) is fetch(S’[tm],
S[tc]). fetch(S’[tm], S[tc]) can be computed by inspecting
S’[l] and such a process is similar to Line 10-17 in Figure 9.
In this case, the remaining on-chip buffer at time S[tc] is
BufSize - L[size]-fetch(S’[tm], S[tc]). As a result, the
resulting memory idle time is L[comp] - (BufSize - (L[size] +
fetch(S’[tm], S[tc]))) / MemBW. However, note that L[comp] -
(BufSize - L[size]) / MemBW) is not the result of the scheduling
decision. The additional amount of memory idle time resulting
from the scheduling decision is as follows.

fetch(S’[tm], S[tc]) / MemBW

Potential Compute Idle Time. There is an additional impli-
cation of a scheduling decision. A scheduling decision can
potentially incur a compute idle time in the future, depending on
the next layer that is scheduled. Figure 13 illustrates this case.
As shown in the figure, the scheduling of a layer L resulted in

DRAM
1
2

PE

DRAM
PE

S’

Time

3
2 3

Small decoupling distance

DRAM
PES’’

1
2 3

2 3
4

4

1
1
2 3

2 3
4

4

(a)

(b)

Already Sched. Newly Sched.
Compute Idle TimeWill be Sched.

S’’

Potential compute idle time

1

1

Fig. 13. Illustration of the potential compute idle time.

a relatively small decoupling distance. This does not incur a
compute idle time when the next scheduled layer’s L[size] is
small, as shown in Figure 13(a). However, if candidate layers
for the next scheduling step have large memory time, it ends
up occurring a compute idle time, as shown in Figure 13(b).
To avoid such a potential compute idle time, it is better to
maintain the decoupling distance that is at least as large as
the time it takes to fetch the data for the largest layer (i.e.,
maximum of L[size] / MemBW for all L in currently running
models). In this case, the amount of potential compute idle
time for a scheduling decision is as follows.

L[size]max / MemBW - (S’[tc] - S’[tm])

Layer Selection. Given a set of candidate layers to schedule,
Layerweaver computes the total idle time that each scheduling
decision incurs. Then, the one that incurs the minimum total
idle time is selected and scheduled. In a case where multiple
candidate layers incur zero total idle time, one that does not
incur inherent memory idle time (i.e., L[comp] - (BufSize -
L[size]) / MemBW) < 0) is selected. Finally, for further tie-
breaking, one with the largest decoupling distance (i.e., S’[tc]

- S’[tm]) is selected. One drawback of this greedy policy is
that it can potentially incur starvation. If a model contains a
highly unbalanced layer (e.g., very large memory usage with a
very little compute), this layer is likely to be never selected by
our scheduler despite the model has layers with more favorable
characteristics following that unbalanced layer.
Starvation Prevention. To avoid starvation, Layerweaver
sometimes schedules the layer that yields a longer total idle
time. Specifically, the first case is where all candidates are
incurring compute idle time (excluding potential ones). This
indicates that all candidate layers are memory-intensive. This
is not the steady-state behavior since Layerweaver only targets
scenarios where there exist at least one or more compute-
intensive models. However, if a memory-intensive layer from
the compute-intensive model is not scheduled, Layerweaver
will continue to encounter memory-intensive candidates, and
the circumstance can persist. In this case, Layerweaver selects a
layer from the compute-intensive model regardless of the exact
size of compute idle time it incurs. By doing so, a candidate
layer from the compute-intensive model will eventually be
a compute-intensive one and effectively continue operation.

7

Similarly, there is also a case where all candidate layers are
incurring memory idle time. For a similar reason, Layerweaver
selects a layer from the memory-intensive model. We find that
this is sufficient to avoid starvation, considering that all other
cases (e.g., some candidate layers are compute-intensive while
the others are memory-intensive) cannot starve a single model.

E. Discussion

Scheduling Cost. Our scheduler has O(kN) complexity, where
k is the number of models, and N is the number of layers to
interweave at a single scheduler invocation. We measured the
latency of our scheduling algorithm using a single core of Intel
i7-7700K CPU @ 4.20GHz. For two models, the measured
scheduler throughput is about 15 layers/µs. Considering that
the average latency of a single layer in our evaluated workloads
(w/ batch size = 1) on our evaluated NPUs (see Section IV-A)
ranges from 4.7us to 221us, the time spent on scheduling is
much smaller than the time spent on DNN models. Furthermore,
such scheduling happens off-critical path most of the time using
the host CPU. We also verified that the scheduling time scales
linearly with the number of models and the number of layers
as expected.
Scheduling Granularity. Section III-A explains that Layer-
weaver generates a schedule by interweaving layers from each
model. By layer, we meant basic building blocks of neural
networks such as convolutional layer and FC (dense) layer.
Both TensorFlow Keras and PyTorch list a set of supported
layers in their documentation [52], [53]. However, this is just
an example. In fact, the minimum scheduling granularity of
Layerweaver is tied with the granularity of instruction that a
target NPU supports. For example, if the host processor utilizes
a single instruction for a sequence of layers (layer fusion),
Layerweaver can interleave the schedule at that granularity. On
the other hand, if the host utilizes finer-grained instructions
(e.g., different instructions for matrix multiplication and the
followed elementwise activation), Layerweaver can operate at
that granularity. In general, Layerweaver can perform better
with the finer-grained instructions. For platforms that only
support very coarse-grained instructions, Layerweaver can be
implemented in hardware by extending the NPU design. For
example, AI-MT [51] utilizes hardware extensions to enable
fine-grained data movements as well as computation. Doing
so allows them to minimize the on-chip storage requirements
for the weight buffer.
Context Switch Overhead. To minimize the context switch
overhead (i.e., the overhead of executing a layer from one
model then executing another layer from a different model),
Layerweaver requires an activation buffer that can house
activations for two models. By doing so, even when executing
a layer from a different model, no extra off-chip data transfer
needs to happen. Each model’s activation buffer is sized to fit
the largest activation size of the model for the given batch size.
In our evaluation, the model that required the largest activation
buffer size was MobileNetV2 (2.2MB) and ResNet50 (1.5MB)
for single-batch inference. In other words, Layerweaver requires
an additional 1.53MB activation buffer. The storage overhead

TABLE I
NPU CONFIGURATION PARAMETERS

Compute-centric architecture [18]
Peak throughput 92 TOP/s
of PEs 12 × 4096 (12 ICE)
PE operating frequency 927 MHz
Memory BW 68 GB/s (12 ICE)
On-chip SRAM 48 MB (Weight) / 2.3 MB (ACT)

1.5 MB (Extra ACT Buffer)
Memory-centric architecture [17], [55]

Peak throughput 22.5 TOP/s
of PEs 128 × 128 (1 MXU)
PE operating frequency 700 MHz
Memory BW 225 GB/s (1 MXU)
On-chip SRAM 48 MB (Weight) / 36 MB (ACT)

24 MB (Extra ACT Buffer)
Common parameters

Arithmetic precision 16 bits
Dataflow Weight-stationary

becomes larger as the batch size increases, but the relative
overhead remains the same since the original activation buffer
size increases at the same time. Table I shows the storage
overhead of multi-model execution on two different evaluated
NPU configurations.
Failsafe Mechanism. Layerweaver gets very limited or no
benefit at all when all tasks are compute-intensive or memory-
intensive at the same time. In such a case, it is impossible to
achieve decent performance improvement. For example, if all
workloads are compute-intensive, the scheduling decision does
not really make a difference. All choices will incur memory
idle time, and there will be near-zero compute idle time. For
this reason, if Layerweaver detects that all provided workloads
are compute-intensive or memory-intensive during the profiling
run, Layerweaver is disabled.

IV. EVALUATION

A. Methodology

Simulation Setup. To estimate the computation cycles of
NPU, we used MAESTRO [54], which analytically estimates
computation cycles with various architectural parameters.
We set two types of the NPU, NNP-I-like compute-centric
NPU [18], and TPUv3-like memory-centric NPU [17], [55].
For dataflow we use weight stationary dataflow [56]. The
detailed parameters are summarized in Table I. We built a
custom simulator to model the layer-wise execution behavior.
We estimated computation cycles from MAESTRO. To estimate
memory behavior, we calculate the data transfer time from
off-chip DRAM for each layer using its tensor dimensions.
Workloads. We select four popular DNNs for each of the two
workload groups: compute-intensive and memory-intensive.
Thus, the total number of DNN pairs taking one from
each group is 16. The four compute-intensive models are
InceptionV3 (IC) [44], MobileNetV2 (MN) [45], ResNet50
(RN) [22], and ResNeXt50 (RX) [21]. For memory-intensive
models, we use BERT-base (BB), BERT-large (BL) [24], NCF
(NCF) [26], and XLNet (XL) [25].

8

51+%
%

51+%
L

51+X
L

51+1
C)

5X+%
%

5X+%
L

5X+X
L

5X+1
C)

IC
+%

%
IC

+%
L
IC

+X
L

IC
+1

C)

01+%
%

01+%
L

01+X
L

01+1
C)

GeR
Pea

n
0

25

50

75

100
S7

P
LP

Sr
Rv

eP
en

t (
%

) AI-07 Layerweaver

51+%
%

51+%
L

51+X
L

51+1
C)

5X+%
%

5X+%
L

5X+X
L

5X+1
C)

IC
+%

%
IC

+%
L
IC

+X
L

IC
+1

C)

01+%
%

01+%
L

01+X
L

01+1
C)

GeR
Pea

n
0

25

50

75

100

S7
P

LP
Sr

Rv
eP

en
t (

%
) AI-07 Layerweaver

(a) Multi-batch streams

(a) Single-batch streams

Fig. 14. System throughput (STP) improvement on (a) a memory-centric
NPU for single-batch streams and (b) a compute-centric NPU for multi-batch
streams (# streams=2). Higher is better.

B. Evaluation Scenarios

We extend the single-stream scenario of MLPerf infer-
ence [27] benchmark to support multiple different kinds of
inference requests. As stated in Section II, Layerweaver can
enhance various kinds of NPUs when there is an inherent
mismatch between their compute-memory capabilities and
arithmetic intensities of the DNNs being served.
Schedulers. For evaluation we compare Layerweaver with
three baseline schedulers as well as a (nearly) concurrent
work AI-MT [51]. The three baseline schedulers include: 1)
scheduling only computation-intensive models (Compute-only),
2) scheduling only memory-intensive models (Memory-only), 3)
scheduling both computation-intensive and memory-intensive
models by bisecting the cycles equally and allocating each
half to a specific model (Fair). Note that those baselines used
for our evaluation substantially outperform layer-wise double
buffering [32], which is used as a baseline scheme of AI-MT.
We also carefully model the features of AI-MT, including
memory block prefetch, compute block merging, and priority
mechanism. AI-MT requires setting two user-defined thresholds,
and through extensive 2D parameter sweeping we use the
setting that yields the best overall throughput for our workloads.
All schedulers are run on the same hardware configuration
specified in Table I.
Metric. We evaluate Layerweaver by measuring the system
throughput (STP) [57], which is a common metric to quantify
the performance of multiple workloads running on an NPU. To
compute this metric, each query from a model gets the weight
that is proportional to its latency in standalone execution. Then,
we compare the weighted queries per second using various
schedulers. For example, assume that model A takes 5ms and
model B 10ms to process a single query. Suppose Scheduler 1
processes four queries of model A within 20ms and Scheduler
2 processes two queries of model B within the same interval.
Then, their STPs are equal according to our metric.

0

50

100

AF
tLv

e
P(

 (%
)

0ePRry Rnly)DLr CRPpXte Rnly AI-0T LDyerweDver

51+%
%

51+%
L

51+X
L

51+1
C)

5X+%
%

5X+%
L

5X+X
L

5X+1
C)

IC
+%

%
IC

+%
L
IC

+X
L

IC
+1

C)

01+%
%

01+%
L

01+X
L

01+1
C)

GeR
PeD

n
0

50

100

AF
tLv

e
D

5
A0

 (%
)

0

50

100

AF
tLv

e
P(

 (%
)

0ePRry OnOy)DLr CRPpXte OnOy AI-0T LDyerweDver

51+%
%

51+%
L

51+X
L

51+1
C)

5X+%
%

5X+%
L

5X+X
L

5X+1
C)

IC
+%

%
IC

+%
L
IC

+X
L

IC
+1

C)

01+%
%

01+%
L

01+X
L

01+1
C)

GeR
PeD

n
0

50

100

AF
tLv

e
D

5
A0

 (%
)

(a) Single-batch streams

(b) Multi-batch streams

Fig. 15. Portion of active cycles on (a) a memory-centric NPU for single-batch
streams and (b) a compute-centric NPU for multi-batch streams (# streams=2).

Single-Batch Streams with Memory-centric NPU. This
scenario reflects a case where a single NPU is asked to
handle multiple tasks simultaneously while achieving the
maximum throughput. In this scenario, whenever the NPU
completes a query for a model, the next query for the same
model is immediately dispatched. Such a single-batch inference
is popular for time series or real-time data. For such data,
achieving better throughput in this scenario results in a better
processing rate (e.g., frames per second, sensor frequency, etc.).
Layerweaver can resolve a severe resource under-utilization
problem that a memory-centric NPU experiences on single-
batch workloads (Figure 4 in Section II-C).
Multi-Batch Streams with Compute-centric NPU. This
scenario is analogous to the previous scenario except that
a request is batched with more than one inputs. For evaluation,
we use the batch size of 16 unless specified otherwise. This
scenario may correspond to a case where the NPU is required
to run multiple models, and each model is invoked with
inputs collected from multiple sources at a regular interval
(e.g., autonomous driving, edge computing). Layerweaver can
alleviate the resource under-utilization problem of a compute-
centric NPU on multi-batch workloads.

C. Results

Throughput. Figure 14(a) shows the system throughput (STP)
over various model combinations. Layerweaver improves the
system throughput on memory-centric NPU for single-batch
streams (# streams = 2) by 60.1% on average (up to 75.2%)
compared to the three baselines. Note that all three baseline

9

0
0.5
1

1.5
2

2.5

RN
+B
B

RN
+B
L

RN
+X
L

RN
+N
CF

RX
+B
B

RX
+B
L

RX
+X
L

RX
+N
CF
IC
+B
B
IC
+B
L
IC
+X
L

IC
+N
CF

MN
+B
B

MN
+B
L

MN
+X
L

MN
+N
CF

Ge
om
ea
n

AN
TT

AI-MT Layerweaver

0
0.5
1

1.5
2

2.5

RN
+B
B

RN
+B
L

RN
+X
L

RN
+N
CF

RX
+B
B

RX
+B
L

RX
+X
L

RX
+N
CF
IC
+B
B
IC
+B
L
IC
+X
L

IC
+N
CF

MN
+B
B

MN
+B
L

MN
+X
L

MN
+N
CF

Ge
om
ea
n

AN
TT

(a) Single-batch streams

(b) Multi-batch streams

Fig. 16. Average Normalized Turnaround Time (ANTT) with (a) single-batch
streams and (b) multi-batch streams (# streams=2). Lower is better.

schedulers (Section IV-B) have the same system throughput
because they simply execute different combinations of two
models with no layer-wise interweaving. Similarly, Figure 14(b)
shows that Layerweaver improves the system throughput on
compute-centric NPU for multi-batch streams (# streams = 2)
by 53.9% on average (up to 90.2%). These results translate to
21.6% and 16.3% higher geomean throughput than AI-MT for
single- and multi-batch streams, respectively. (A more detailed
analysis is to be presented later in this section.) Layerweaver
effectively interweaves layers to achieve a much higher resource
utilization, and hence substantial throughput gains.
Utilization of PE Cycles and DRAM Bandwidth. Fig-
ure 15(a) shows the portion of active cycles for PEs and memory
on the single-batch streams scenario, and Figure 15(b) shows
the same on the multi-batch streams scenario. On average,
Layerweaver achieves 99.7% and 91.3% utilization of PE
cycles and DRAM bandwidth, respectively, for the single-
batch streams scenario, and 99.9% and 70.7% for the multi-
batch streams scenario. The baseline schedulers share the same
resource under-utilization problem. The Compute-only and
Memory-only schedulers end up with a low utilization for
either DRAM bandwidth or PE cycles. Even if two DNNs are
time-multiplexed at a model granularity (i.e., Fair), they end
up with a mediocre level of utilization for both resources.

In contrast, Layerweaver improves the resource utilization
of both PE cycles and DRAM BW by scheduling layers
in a way that minimizes the resource idle time. Note that
Layerweaver does not fully utilize DRAM bandwidth in some
cases (e.g., combinations containing RX in Figure 15(a) and
some combinations in Figure 15(b)). This is due to an inherent
imbalance between compute and memory time leading to
memory idle time (i.e., L[comp] - (BufSize - L[size]) / MemBW)
as discussed with Figure 12 in Section III-D. This problem can
be alleviated by increasing the on-chip buffer size (BufSize)
or adding more PEs to reduce compute time (L[comp]).
Impact on Single Request Latency. Figure 16 presents the
average normalized turnaround time (ANTT) for both single-

3.0 3.5 4.0 4.5 5.0

3E

D5A0

3E

D5A0

3E

D5A0

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

BB-only

MN-only

Layerweaver

Time (ms)

BERT-base (BB)MobileNetV2 (MN)

1x1 Conv

Fig. 17. Timeline analysis on BERT-base (BB) and MobileNetV2 (MN).
Multi-batch streams (# streams = 2) is run on memory-centric device.

and multi-batch streams. This metric is an average of latency
slowdown compared to standalone execution for each model.
By executing multiple, heterogeneous requests concurrently,
Layerweaver trades the latency of an individual request for
higher system throughput. The ANTTs of Layerweaver are
1.27 and 1.36 for single- and multi-batch streams, respectively,
normalized to the standalone execution time. This result is much
more favorable than AI-MT [51], whose ANTTs are 1.55 and
1.58. Furthermore, Layerweaver has much smaller variations of
ANTT than AI-MT to demonstrate more robust performance.
We also checked the geomean of maximum slowdown (i.e.,
100% tail) for each workload on both AI-MT and Layerweaver.
AI-MT exhibited 1.89× maximum slowdown and Layerweaver
exhibited 1.40× maximum slowdown on single-batch streams.
Similarly, AI-MT showed 1.90× maximum slowdown and
Layerweaver exhibited 1.61× maximum slowdown on multi-
batch streams. As expected, Layerweaver has much less impact
on tail latency than AI-MT. Note that Layerweaver’s near-ideal
schedule that fully utilizes both DRAM bandwidth and PE
still incurs a certain level of slowdown. This is inevitable in
cases where a single model was already utilizing more than
50% of the resources. In such a case, an interleaving of two
models can never achieve more than 2× speedup, and thus the
slowdown is unavoidable.
Timeline Analysis. As a case study, we present an execution
timeline visualizing the busy cycles for PEs and DRAM
channels in Figure 17 while executing two DNN models
(MN and BB). Standalone execution leads to under-utilization
of either compute or off-chip DRAM bandwidth resources.
However, Layerweaver can successfully balance the memory
and compute resource usage to minimize the resource idle time.
One interesting observation is that Layerweaver can effectively
handle memory-intensive layers in a compute-intensive model.
The boxed area in red in the figure corresponds to the 1×1
and grouped convolution layers with very large input channels
in MN [23]. These layers are memory-intensive although the
whole model is known to be compute-intensive. In such a case,
our scheduler prioritizes the compute-intensive model (MN)
as described in Section III-D so that MN can quickly move
to compute-intensive layers to prevent starvation of the model
and improve overall resource utilization.
In-depth Comparison to AI-MT. AI-MT [51] is a very recent
work that also utilizes time-multiplexed multi-DNN execution
to improve system throughput. It aims to balance both compute

10

3(

D5A0

7.00 7.05 7.10 7.15 7.20 7.25 7.30 7.35 7.40
7iPe (Ps)

3(

D5A0
Layerweaver

(a)

(b)

XLNet (XL)MobileNetV2 (MN)

AI-MT

New RN’s execution starts
AI-MT’s suboptimal execution when

all candidate layers are memory-intensive

BERT-large (BB)Resnet50 (RN)

P(

D5A0

7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00
7iPe (Ps)

P(

D5A0
AI-MT

Fig. 18. Timeline analysis demonstrating (a) a case that AI-MT shows
PE under-utilization with MobileNetV2 (MN) and XLNet (XL). And (b)
shows a ResNet50 (RN) and BERT-large (BL) case that AI-MT suffer from
the starvation originated from memory-intensive layers in compute-intensive
models (e.g. FC layers in RN).

and memory resource usage by maintaining the decoupling
distance within a desired level. One limitation of AI-MT is
that its performance largely depends on the choice of two
user-defined thresholds. Even with careful selection of those
parameters via extensive 2D parameter sweeping, we find
that Layerweaver consistently outperforms AI-MT across all
workloads as shown in Figure 14 and Figure 16.

Figure 18(a) shows a case where AI-MT execution results in
the PE under-utilization (MN+XL in Figure 14(b)). When AI-
MT scheduler finds that the system has little on-chip memory
space left, it blindly selects a layer with the least compute
time, with an intention of avoiding the memory idle time that
can occur from scheduling a layer with a long compute time.
Unfortunately, in many cases, such a layer is the one from a
memory-intensive model, which also consumes a large amount
of on-chip memory space, and thus does not lower the on-chip
memory usage. Thus, the problem persists and the system
suffers from PE under-utilization since the scheduler favors
layers from memory-intensive models. In contrast, Layerweaver
achieves high performance for all cases by estimating the cost
of a particular scheduling decision in a more formal way and
directly aiming to minimize the resource idle time.

Figure 18(b) presents another scenario where AI-MT fails
to make good scheduling decisions. This is a case where
all layers in candidateGroup are all memory-intensive, and
there exists a sufficient decoupling distance. The particular
timeline shown in the figure is from the RN+BL workload
where a compute-intensive model (RN) has a memory-intensive
layer (e.g., FC or 1x1 Conv). In this case, AI-MT randomly
selects a layer to execute. Unfortunately, every time AI-MT
schedules a layer from BERT-large (BL) in this situation, a
large amount of PE under-utilization happens. On the other
hand, Layerweaver intelligently chooses to execute the memory-
intensive layer from a compute-intensive model, expecting the
compute-intensive layer to follow the current memory-intensive
layer (explained in the “Starvation Prevention” paragraph

1 2 4 8 16
(a)

0

25

50

ST
P

im
pr

ov
em

en
t (

%
) AI-MT Layerweaver

1 2 4 8 16
(b)

AI-MT Layerweaver

Fig. 19. Average system throughput (STP) on (a) memory-centric NPU and
(b) compute-centric NPU for multi-batch streams (stream # = 2) scenario.
Various batch size from 1 to 16 is used to demonstrate its sensitivity. The
bold label denotes the selected batch size for workload-specific evaluation
(Figure 14).

in Section III-D). As a result, Layerweaver can avoid the
unnecessary PE idle time that AI-MT suffers from.

Sensitivity to Changes in Workload Characteristics. Fig-
ure 19 shows the average throughput improvement in N-batch
streams for memory-centric and compute-centric NPUs. The
setup is similar to Figure 14 except that we vary batch sizes
for each NPU and report the geomean throughput improvement
for each case. Changing the batch size affects the arithmetic
intensity of the model. And both Layerweaver or AI-MT [51]
benefit the most when one of the models is compute-intensive,
and the other is memory-intensive in that particular NPU.
However, depending on batch sizes, both models can be
relatively compute-intensive or memory-intensive as implied in
Figure 3. For example, Figure 19(a) shows that the larger batch
size makes both workloads to be compute-intensive and lower
the benefits of multi-model scheduling on memory-centric NPU.
On the other hand, the smaller batch size makes both models
to be memory-intensive on compute-centric NPU and lower the
benefits of Layerweaver or AI-MT. In all cases, Layerweaver
outperforms AI-MT by a significant margin.

RN+IC
+B

B+X
L

RN+IC
+B

B+N
CF

RN+IC
+X

L+
NCF

RN+M
N+B

B+X
L

RN+M
N+B

B+N
CF

RN+M
N+X

L+
NCF

IC
+M

N+B
B+X

L

IC
+M

N+B
B+N

CF

IC
+M

N+X
L+

NCF

Geo
mea

n
0

25

50

75

100

S
TP

 im
pr

ov
em

en
t (

%
) AI-MT Layerweaver

Fig. 20. Single-batch streams (# streams = 4) system throughput (STP) on a
compute-centric NPU.

Layerweaver with More Than Two Models. Layerweaver
can also be utilized with more than two models. Here, we
evaluate a case where four models (two compute-bound, two
memory-bound) are deployed. Specifically, we assume a single-
batch streams scenario on compute-centric NPU device. To
make the number of combinations manageable, we do not
include ResNeXt50 and BERT-large for this experiment to
obtain 9 combinations (instead of 36) as shown in Figure 20.
It shows that Layerweaver can achieve substantial speedups
for these workloads as well. Layerweaver demonstrates 27.2%
higher throughput improvement than AI-MT. However, we
observe that utilizing Layerweaver for more than two models

11

does not bring much additional benefit. Compared to the
case of simply utilizing the schedule that stitches two-model-
interweaved schedules (e.g., RN + BB schedule followed by IC
+ XL schedule), the four-model-interweaved schedule resulted
in the small geomean STP gain (i.e., <1 % average). As long
as one model is memory-intensive and the other is compute-
intensive, Layerweaver almost fully utilizes resources just with
two models.

V. RELATED WORK

Task Multi-tasking on Accelerators. Minimizing perfor-
mance interference caused by multi-tasking on GPU has been
previously studied [58]–[60]. Prophet [58] and Baymax [59]
acknowledge that resource contention by task co-location and
PCIe bandwidth contention caused by data transfers is crucial
for multi-tasking performance. Thus, they identify the task co-
location performance model to improve compute utilization of
GPUs. In contrast, Layerweaver leverages different workload
characteristics of DNN models to balance resource utilization
on the emerging NPU hardware. AI-MT [51] proposes a TPU
extension to support time-multiplexed multi-model execution
for optimizing throughput. However, its scheduling algorithm
largely relies on heuristics requiring fine tuning of two user-
defined thresholds, which is burdensome and suboptimal. We
quantitatively compared the quality of scheduling to demon-
strate Layerweaver substantially outperforms AI-MT without
dedicated hardware support or parameter tuning (Section IV-C).
Priority-based Task Preemption. To satisfy the latency
constraints of high-priority inference tasks, preemption-based
approaches have been proposed [61]–[64]. PREMA [61]
introduces an effective preemption mechanism that considers
the task size and its priority to balance throughput and
latency, and a preemptible NPU architecture holding metadata
for task switching. TimeGraph [62] proposes a real-time
device-driver level scheduler based on two-priority policy
using GPU resource usage. Tanasic et al. [64] devise two
preemption mechanisms using context switch and GPU SM
draining, respectively, to reduce the performance overhead
of preemption. These proposals target to improve QoS for
the latency of requests but not increase system throughput.
Instead, Layerweaver demonstrates throughput improvement
by co-scheduling multiple heterogeneous DNN models.
DNN Serving System Optimization. TensorFlow serving [15]
is a production-grade DNN serving system for a serving system.
Also, other serving systems such as SageMaker [65], Google
AI platform [66], and Azure Machine Learning [67] offer
separate online and offline services that automatically scale
models based on their load. Clipper [13] targets a low-latency
prediction serving system on top of various machine learning
frameworks using caching, batching, adaptive model selection.
Based on Clipper, Pretzel [14] improves the inference latency
by optimizing the serving pipelines. Since these inference
serving systems use the only coarse-grained (e.g., model, input
batch) scheduling, the results can be suboptimal compared to
Layerweaver, which exploits fine-grained scheduling at a layer
granularity across different models.

VI. CONCLUSION

This paper presents Layerweaver, a DNN inference serving
system with a novel multi-model scheduler, which eliminates
temporal waste in compute and memory bandwidth resources
via layer-wise time-multiplexing of two or more DNN models
with different characteristics. The scheduling algorithm follows
the concept of divide-and-conquer and finds a near-optimal
schedule that minimizes the temporal waste. Our evaluation of
Layerweaver on 16 pairs of compute- and memory-intensive
DNN models demonstrates an average of 60.1% and 53.9%
improvement in system throughput for single- and multi-batch
streams, respectively, compared to the baseline decoupled
execution with no overlap between models. This improvement
is attributed to an increase in temporal utilization of PEs and
DRAM channels via minimizing resource idle time.

ACKNOWLEDGMENT

This work is supported by Samsung Advanced Institute
of Technology and the National Research Foundation of
Korea grant funded by the Ministry of Science, ICT &
Future Planning (PE Class Heterogeneous High Performance
Computer Development, NRF-2016M3C4A7952587). Jae W.
Lee is the corresponding author.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines, Second
Edition. Morgan & Claypool Publishers, 2013.

[2] P. Li, “The DQN model based on the dual network for direct marketing,”
in Proceedings of the 2018 IEEE 20th International Conference on High
Performance Computing and Communications; IEEE 16th International
Conference on Smart City; IEEE 4th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), 2018, pp. 1088–1093.

[3] L. M. Matos, P. Cortez, R. Mendes, and A. Moreau, “Using deep learning
for mobile marketing user conversion prediction,” in Proceedings of the
2019 International Joint Conference on Neural Networks (IJCNN), 2019,
pp. 1–8.

[4] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia, H. S. Lee, A. Malevich,
D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang, “The architectural
implications of facebook’s DNN-based personalized recommendation,”
in 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 488–501.

[5] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied machine learning at
facebook: A datacenter infrastructure perspective,” in Proceedings of the
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), Feb 2018, pp. 620–629.

[6] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD). Association for Computing Machinery, 2014, p. 701–710.

[7] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD). Association
for Computing Machinery, 2016, pp. 855––864.

[8] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski,
A. Khurana, R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and
J. Mars, “Sirius: An open end-to-end voice and vision personal assistant
and its implications for future warehouse scale computers,” in Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2015, p.
223–238.

[9] Google, “Google now,” http://www.google.com/landing/now/.

12

http://www.google.com/landing/now/

[10] Y. Xiang and H. Kim, “Pipelined data-parallel CPU/GPU scheduling for
multi-DNN real-time inference,” in Proceedings of the IEEE Real-Time
Systems Symposium (RTSS), 2019.

[11] M. Yan, A. Li, M. Kalakrishnan, and P. Pastor, “Learning probabilistic
multi-modal actor models for vision-based robotic grasping,” in Proceed-
ings of the 2019 International Conference on Robotics and Automation
(ICRA), May 2019, pp. 4804–4810.

[12] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained IoT edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[13] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system,” in
Proceedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

[14] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer,
and M. Interlandi, “PRETZEL: Opening the black box of machine
learning prediction serving systems,” in Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Oct. 2018, pp. 611–626.

[15] “TensorFlow serving models,” https://www.tensorflow.org/tfx/guide/
serving.

[16] “NVIDIA Triton Inference Server,” https://developer.nvidia.com/nvidia-
triton-inference-server.

[17] “Cloud TPU at Google Cloud.” https://cloud.google.com/tpu/docs/system-
architecture.

[18] O. Wechsler, M. Behar, and B. Daga, “Spring Hill (NNP-I 1000), Intel’s
Data Center Inference Chip,” in A Symposium on High Performance
Chips (Hot Chips), 2019.

[19] Cambricon, “Cambricon MLU100,” http://www.cambricon.com.
[20] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA), 2017.

[21] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” CoRR:1611.05431, 2016.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted residuals and linear bottlenecks,” CoRR:1801.04381,
2018.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
CoRR:1810.04805, 2018.

[25] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le,
“XLNet: Generalized autoregressive pretraining for language understand-
ing,” CoRR:1906.08237, 2019.

[26] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, “Neural
collaborative filtering,” CoRR:1708.05031, 2017.

[27] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gardner,
I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee,
J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Osborne,
G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao, F. Sun, H. Tang,
M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu, G. Yuan,
A. Zhong, P. Zhang, and Y. Zhou, “MLPerf inference: A benchmarking
methodology for machine learning inference systems,” in Proceedings
of the 47th International Symposium on Computer Architecture (ISCA).
Association for Computing Machinery, 2020.

[28] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “TANGRAM:
Optimized coarse-grained dataflow for scalable NN accelerators,” in

Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2019.

[29] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S. W. Keckler,
“Simba: Scaling deep-learning inference with multi-chip-module-based
architecture,” in Proceedings of the 52nd Annual International Symposium
on Microarchitecture (MICRO), 2019.

[30] S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha, A. Jagan-
nathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, and A. Raghunathan,
“SCALEDEEP: A scalable compute architecture for learning and evalu-
ating deep networks,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA), 2017.

[31] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan,
S. W. Keckler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and
composable storage idiom for explicit decoupled data orchestration,”
in Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2019.

[32] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the International Symposium on Field-Programmable
Gate Arrays (FPGA), 2015.

[33] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in Proceedings of the 49th Annual International Symposium
on Microarchitecture (MICRO), 2016.

[34] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in Proceedings
of the 43rd Annual International Symposium on Computer Architecture
(ISCA), 2016.

[35] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable inter-
connects,” in Proceedings of the 23rd International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[36] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible
dataflow accelerator architecture for convolutional neural networks,”
in Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA), 2017.

[37] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H. Park,
S. Lee, K. Park, J. W. Lee, and D.-K. Jeong, “A3: Accelerating attention
mechanisms in neural networks with approximation,” in Proceedings of
the 26th IEEE International Symposium on High Performance Computer
Architecture, ser. HPCA, 2020.

[38] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning super-
computer,” in Proceedings of the 47th Annual International Symposium
on Microarchitecture (MICRO), 2014.

[39] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, and L. Tang, “Djinn and tonic: DNN as a
service and its implications for future warehouse scale computers,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture (ISCA), 2015, p. 27–40.

[40] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017, p. 615–629.

[41] “Samsung Exynos 9 Series 9820,” https://www.tensorflow.org/tfx/guide/
serving.

[42] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning for
the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[43] Google Cloud, “Edge TPU: Run inference at the edge,” https://cloud.
google.com/edge-tpu.

[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” 2015.

[45] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[46] Habana, “Habana Goya,” https://habana.ai.
[47] “AWS Elastic Load Balancing,” https://aws.amazon.com/ko/

elasticloadbalancing.

13

https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/docs/system-architecture
http://www.cambricon.com
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://cloud.google.com/edge-tpu
https://cloud.google.com/edge-tpu
https://habana.ai
https://aws.amazon.com/ko/elasticloadbalancing
https://aws.amazon.com/ko/elasticloadbalancing

[48] “Load Balancing on IBM Cloud,” https://www.ibm.com/cloud/learn/load-
balancing.

[49] “Kubeflow: The Machine Learning Toolkit for Kubernetes,” https://www.
kubeflow.org.

[50] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,” in Pro-
ceedings of the 43rd International Symposium on Computer Architecture
(ISCA), 2016.

[51] E. Baek, D. Kwon, and J. Kim, “A multi-neural network acceleration
architecture,” in Proceedings of the 47th Annual International Symposium
on Computer Architecture (ISCA), 2020, pp. 940–953.

[52] “TensorFlow Core v2.3.0. Keras API docs.” https://www.tensorflow.org/
api_docs/python/tf/keras/layers, 2020.

[53] “PyTorch 1.6.0 documentation.” https://pytorch.org/docs/stable/nn.html,
2020.

[54] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
“Understanding reuse, performance, and hardware cost of DNN dataflow:
A data-centric approach,” in Proceedings of the 52nd Annual International
Symposium on Microarchitecture (MICRO), 2019.

[55] Y. Wang, G.-Y. Wei, and D. Brooks, “A systematic methodology
for analysis of deep learning hardware and software platforms,” in
Proceedings of Machine Learning and Systems (MLSys), 2020, pp. 30–43.

[56] G. Zhou, J. Zhou, and H. Lin, “Research on NVIDIA deep learning
accelerator,” in Proceedings of the 12th International Conference on
Anti-counterfeiting, Security, and Identification (ASID), 2018.

[57] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53, 2008.

[58] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise QoS prediction on non-preemptive accelerators to
improve utilization in warehouse-scale computers,” in Proceedings of the
22nd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2017.

[59] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness
and increased utilization for non-preemptive accelerators in warehouse
scale computers,” in Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2016.

[60] P. Yu and M. Chowdhury, “Fine-grained GPU sharing primitives for
deep learning applications,” in Proceedings of Machine Learning and
Systems 2020 (MLSys), 2020, pp. 98–111.

[61] Y. Choi and M. Rhu, “PREMA: A predictive multi-task scheduling
algorithm for preemptible neural processing units,” in Proceedings of the
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 220–233.

[62] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
GPU scheduling for real-time multi-tasking environments,” in Proceed-
ings of the 2011 USENIX Conference on USENIX Annual Technical
Conference (ATC), 2011.

[63] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time GPU management,” in Proceedings of the 2013 IEEE 34th
Real-Time Systems Symposium (RTSS), 2013, pp. 33–44.

[64] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling preemptive multiprogramming on GPUs,” in Proceedings of the
41st International Symposium on Computer Architecture (ISCA), 2014,
pp. 193–204.

[65] Amazon, “Amazon SageMaker,” https://aws.amazon.com/sagemaker/.
[66] Google, “Google AI platform,” https://cloud.google.com/ai-platform.
[67] Microsoft, “Microsoft azure machine learning,” https://docs.microsoft.

com/en-us/azure/machine-learning/.

14

https://www.ibm.com/cloud/learn/load-balancing
https://www.ibm.com/cloud/learn/load-balancing
https://www.kubeflow.org
https://www.kubeflow.org
https://www.tensorflow.org/api_docs/python/tf/keras/layers
https://www.tensorflow.org/api_docs/python/tf/keras/layers
https://pytorch.org/docs/stable/nn.html
https://aws.amazon.com/sagemaker/
https://cloud.google.com/ai-platform
https://docs.microsoft.com/en-us/azure/machine-learning/
https://docs.microsoft.com/en-us/azure/machine-learning/

	Introduction
	Background and Motivation
	Neural Processing Units
	DNN Model Characteristics
	NPU Resource Under-utilization Problem

	Layerweaver
	Overview
	Greedy Scheduler
	Maintaining and Updating Schedule State
	Selecting a Layer to Schedule
	Discussion

	Evaluation
	Methodology
	Evaluation Scenarios
	Results

	Related work
	Conclusion
	References

