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Abstract
Inverted index serves as a fundamental data structure for
efficient search across various applications such as full-text
search engine, document analytics, and other information re-
trieval systems. The storage requirement and query load for
these structures have been growing at a rapid rate. Thus, an
ideal indexing system shouldmaintain a small index size with
a low query processing time. Previous works have mainly fo-
cused on using CPUs and GPUs to exploit query parallelism
while utilizing state-of-the-art compression schemes to fit the
index in memory. However, scaling parallelism to maximally
utilize memory bandwidth on these architectures is still chal-
lenging. In this work, we present IIU1 , a novel inverted index
processing unit, to optimize the query performance while
maintaining a low memory overhead for index storage. To
this end, we co-design the indexing scheme and hardware
accelerator so that the accelerator can process highly com-
pressed inverted index at high throughput. In addition, IIU
provides flexible interconnects between modules to take
advantage of both intra- and inter-query parallelism. Our
evaluation using a cycle-level simulator demonstrates that
IIU provides an average of 13.8× query latency reduction and
5.4× throughput improvement across different query types
while reducing the average energy consumption by 18.6×,

§This work was done while Shivam Bharuka was a visiting researcher at
Seoul National University.
1Pronunciation note: IIU is pronounced as “to-you” by reading the first two
characters ("II") like Roman numeral two.
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compared to Apache Lucene, a production-grade full-text
search framework.
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1 Introduction
Billions of people use computers to perform different tasks.
Among all those different uses of computers, the search is
arguably one of the most popular tasks. While there exist
many different ways to implement a search engine, the most
common way is to utilize an inverted index [1]. Inverted
index is a key-value data structure, where a term (key) is
associated with a sorted list of documents that contain the
term (value). When a user of a search engine wants to re-
trieve a set of documents related to a particular term, the
inverted index data structure enables the engine to quickly
retrieve the list of documents containing that term instead of
going through all documents and checking if the document
contains the term. Once the list of documents is retrieved, the
search engine often scores them using a specific metric [2,3]
to return the list of top-scoring documents to the user.
In many real-world text search engines [4, 5, 6], inverted

index is often compressed to reduce the size of the index
so that (most of) it can fit in memory. For example, a rela-
tively common term such as business appears in more than 12
billion documents in Google search, and thus the list of doc-
ument identifiers (docIDs) containing this term can account
for more than 48 GB memory space (assuming a 4B docID).
Without compression, considering that there exist more than
133,248,235 unique words in popular document sets such as
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Figure 1. Breakdown of query processing time in Lucene

ClueWeb12 [7], it is highly likely that the size of the inverted
index will exceed the amount of available physical memory
and incur significant performance overhead.

A natural downside of the inverted index compression is
that decompression needs to be performed every time the
system needs to process a query with a specific term. As a
result, it adds a substantial amount of latency to time-critical
tasks. To demonstrate the importance of the decompression
operation in search engines, we choose Apache Lucene as
our baseline. It is an open-source search engine library pow-
ering many popular online services, such as Twitter, Netflix,
Instagram, and Ebay [8,9]. Figure 1 shows a breakdown of the
search time in Apache Lucene for three popular query types:
single-term (e.g., “business”), intersection (e.g., “business”
AND “cameo”), and union (e.g., “business” OR “cameo”). The
result demonstrates that decompression accounts for over
40% of the total query response time over all three query
types. Moreover, the rest of query time is mostly spent on set
operations (intersection/union) and scoring the documents.

Unfortunately, conventional CPUs are not an ideal choice
for text search engines. Inverted index operations often in-
volve a series of simple, repetitive integer manipulation for
which CPUs are not a cost-effective solution. According to
our profiling using Intel VTune [10], it takes 70-100 instruc-
tions per docID for Lucene to perform these simple opera-
tions. In addition, as shown by Figure 2, most of the popular
search engines (like Lucene) only exploit inter-query paral-
lelism for throughput, but not intra-query parallelism, and
hence their performance scales poorly when the number of
backlogged queries is small.
Alternatively, there are proposals to use GPUs to accel-

erate index search, exploiting both inter- and intra-query
parallelism [11, 12, 13]. However, there are other limitations
in GPU-based index search implementations. In such sys-
tems, the limited capacity of GPU memory becomes a source
of inefficiency. Moreover, they may underutilize GPU com-
putation resources due to an insufficient amount of work at
some stages of query processing [11].

To address these limitations, we propose IIU, a specialized
hardware accelerator for inverted index search. Specifically,
we co-design the indexing scheme (i.e., compression scheme
and partitioning scheme) and the hardware accelerator to-
gether so that the accelerator can process highly compressed
inverted index at high throughput. To achieve even higher
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Figure 2. Performance scalability of Lucene with a varying
number of queries

throughput, our accelerator pipelines (i) the decompression
of a sorted list, (ii) intersection/union of multiple sorted lists,
and (iii) scoring the selected documents, so that all three
operations can be executed in parallel. Finally, IIU leverages
intra-query parallelism as well as inter-query parallelism to
reduce the response time of a single query. In summary, we
make the following contributions:

• We design and implement IIU, a specialized architec-
ture for inverted index search, which accelerates both
decompression and set operations for high-throughput
low-latency query processing. We also extend IIU with
scoring units to support full-text search engines.

• We devise a storage scheme for inverted index cus-
tomized for our hardware implementation, which achi-
eves both high compression ratio and scalability with
additional hardware.

• We provide a detailed evaluation of IIU using a cycle-
level simulator. Also, we synthesize our RTL design to
estimate area and power. Compared to Apache Lucene
IIU reduces the single-query latency by 13.8× and im-
proves throughput by 5.4× on average across differ-
ent query types, while saving energy consumption by
18.6×.

2 Background
Search engines utilize an inverted index structure tomaintain
information about billions of documents effectively. This
index structure is often pre-constructed offline, and when a
query arrives, the engine looks up this structure to efficiently
serve the query within a few milliseconds. Here, we briefly
explain common index compression schemes and a sequence
of steps that a search engine takes to process a query.

2.1 Index Construction
Inverted Index. An inverted index (Figure 3) is a collec-
tion of sorted integer lists (called posting lists), one for each
term appearing in the document corpus. The posting list
consists of document identifiers of all documents contain-
ing that term. Each element in the posting list is defined
as posting. The postings can also be used to contain other
information such as term frequency, positional information,
and document length.



Term
Posting List (L)

DocID TermFreq
business 0, 2, 11, 20, 38, 46 2, 1, 3, 5, 1, 1
cameo 1, 11, 38, 39, 46, 55, 62 2, 1, 1, 7, 4, 2, 3
jarvis 3, 5, 8, 11, 12, 38, 46 6, 4, 1, 1, 1, 2, 4

…
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Figure 3. Inverted index example

Index Compression. Since the size of an inverted index is
large, search engines compress it to minimize the storage
overhead. There are many modern compression schemes
such as VByte [14], Elias-Fano [15], PforDelta [16], NewP-
forDelta [17], OptPforDelta [17], SIMDPforDelta [18], and
MILC [19]. These approaches partition the list into blocks
and then compress the elements within each block. They
maintain information about the range of values in a block
for quick membership testing (i.e., checking if an element
exists in a compressed block). For compression, they (except
MILC) compute the deltas (d-gaps) between two consecutive
document identifiers to minimize the bits to represent them.
For example, L∆ is a list of d-gaps, derived from L:

L(business) = [0, 2, 11, 20, 38, 46]

L∆(business) = [0, 2, 9, 9, 18, 8]

PforDelta and Variants. PforDelta is a widely used com-
pression algorithm which compresses data blocks of 128
d-gaps. It chooses the smallest number of bits b required to
represent a majority (e.g., 90%) of elements called regular
values. The remaining elements, called exceptions, are repre-
sented using 32 bits. It allocates 128 b-bit slots to store both
regular values and position of the next exception while stor-
ing the actual exceptions at the end of the whole compressed
sequence. There are many variants of PforDelta, which aim
to reduce its storage overhead and increase the decompres-
sion speed. NewPforDelta stores the offset of exception and
parts of the exception value in two additional arrays, which
can be further compressed. OptPforDelta formulates the se-
lection of b-bit for each block as an optimization problem.
SIMDPforDelta reorders data elements so that a single CPU
SIMD instruction can process multiple elements.
Memory Inverted List Compression (MILC).MILC [19]
is a state-of-the-art compression scheme that reduces the
query processing time of a compressed inverted list. It em-
ploys an offset-based encoding instead of d-gaps; for every
element in a block, it stores the difference from the first el-
ement of the block instead of the previous element. It also
utilizes dynamic partitioning with in-block compression to
reduce the space overhead of compressed data. Our parti-
tioning scheme (Section 3.2) is based on MILC. MILC further
uses cache-aware and SIMD-aware policies to minimize the

overhead of membership testing and improve the decom-
pression performance on CPU. Note that IIU can easily be
extended to query data compressed entirely using MILC.

2.2 Query Processing for Full-text Search
Query Types. Search engines support queries using terms
and operators. The simplest query type is a single term query,
which is a single-word search. These single term queries can
be further combined using primitive set operators. The inter-
section (∩) operator is used to return the common documents
across the corresponding terms, whereas the union (∪) oper-
ator is used to output all documents containing at least one
of the terms. Assuming the inverted index in Figure 3, here
are examples:

L(business) ∩ L(cameo) = [11, 38, 46]

L(business) ∪ L(cameo) = [0, 1, 2, 11, 20, 38,
39, 46, 55, 62]

Primitive set operations and single term query can be
effectively used to create any complex query like a phrase or
a prefix query. A phrase query is used to match documents
that contain a list of single terms in a particular order. In this
case, the positional information of each term is maintained in
the postings, and an intersection query between their posting
lists is used to obtain the candidate documents. Similarly, a
prefix query, which matches documents containing terms
with a specified prefix, is created using a union between the
posting lists of all the terms with the prefix.
Workflow. To process a query, a search engine performs
four key operations: (i) loads the posting list of each associ-
ated term into memory, (ii) decompresses them, (iii) performs
set operation(s), and (iv) scores them for relevance and top-k
selection. Below we describe each operation in details.
Query Load and List Decompression. The input is the
query and the entire inverted index. The terms in the query
are extracted, and the posting list of each term is loaded into
memory. All the postings are decompressed for single term
and union queries, whereas intersection queries use spe-
cial data structures to reduce the number of decompression
operations.
List Intersection. Fast processing of intersection between
two posting lists is required to satisfy a quality-of-service
(QoS) constraint. Two posting lists, L0 and L1, of similar
lengths can be intersected efficiently using a linear merge
algorithm due to their sorted order. They can be scanned
in parallel to yield an overall runtime proportional to the
length of the longer list. But this approach is wasteful when
the lists have a low intersection rate or their sizes differ
significantly. Thus, modern systems often employ Small-
versus-Small (SvS) intersection algorithm [20, 21]. SvS takes
advantage of the asymmetry of two lists to reduce the total
number of comparisons. It orders the posting lists by their
size and performs intersection starting from the two smallest
lists. It uses a simple binary search algorithm to determine if
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TermFreq 11 2 1 1 5 3 1 2 4 1 3 7
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Figure 4. A posting list for a term and its delta-encoding

a candidate posting from the first list appears in the second
list. The overall runtime now depends on the length of the
shorter list of the two. Furthermore, to avoid decompression
of an entire posting list, the list is partitioned into blocks,
and a skip list is maintained, which keeps the uncompressed
value of the first element from each block. Binary search for
a candidate posting can look up the skip values of the second
list to decide which blocks to decompress and which to skip.
Scoring. Since there can be many documents relevant to a
query, search engines use a scoring system to rank candidate
documents and output the top-k documents. We follow the
Okapi BM25 (Best Match 25) ranking model, which is used
by popular search engines and TREC competitions [3, 22]. It
computes a relevance score for each candidate document of
a query by normalizing the frequency of query terms using
the length of the document.

For example, our intersection query with terms q = {busi-
ness, cameo} appears in N = 3 documents whose identifiers
are D = {11, 38, 46}. Then, the BM25 score of each document
d ∈ D can be represented as follows.

Score(d) =
∑
qi ∈q

IDF(qi ) ·
t f (qi ,d) · (k1 + 1)

t f (qi ,d) + k1 · (1 − b + b ·
|d |

avдdl )

The term frequency t f (qi ,d) counts the number of times a
query term qi appears in document d . The more times a term
appears, the higher its contribution to the overall score will
be. The term |d |

avдdl measures the length of the document nor-
malized to the average length of all documents in the corpus.
The more terms in the document, the lower the contribution
of each term to the score will be. The constant k1 is used to
limit the term frequency scaling, and the constant b is used
to control the effect of the document length normalization.

IDF(qi ) = log N − n(qi ) + 0.5
n(qi ) + 0.5

Moreover, the inverse document frequency IDF(qi ) mea-
sures the rareness of a term across the entire document cor-
pus. It uses the total number of documents that contain the
term n(qi ) to penalize the common terms. The rarer terms in
the query contribute more to the overall score. For example,
if a query contains the terms q = {the, business}, the term
“business” is more important than the term “the”, which is
likely to appear in almost every document.
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Figure 5. Example block structure of a posting list

3 Inverted Index Scheme for IIU
3.1 Index Structure
Posting List Structure. As explained in Section 2, we build
an inverted index which consists of posting lists for all terms.
In addition to document identifiers (docIDs) we also include
the term frequency in the posting list to perform scoring. For
example, Figure 4 shows that the posting list L for a term, say,
Lausanne, is a list of 2-tuples composed of docID and term
frequency. It also shows the delta-compressed posting list
L∆. Compared to the uncompressed list L, the range of the
docID field becomes much smaller. With this compression
scheme, we can narrow down the bitwidth of this field.
Bit-packing and Partitioning. Bit-packing is an effective
way to save storage space when the range of value is limited.
Instead of utilizing the common bitwidths for integer values
(e.g., 8, 16, 32 bits), bit-packing utilizes the minimum number
of bits that can represent the largest value in the range. How-
ever, when a posting list is large, using the maximum bits
(required to represent the largest value) for smaller values is
inefficient. For example, the list L∆ for the term Lausanne in
Figure 4 contains elements that require 3 − 7 bits for repre-
sentation, but the entire list needs to be compressed using
the maximum bits (=7). To avoid this, our scheme partitions
the posting list into multiple blocks, where each block has
a disjoint set of contiguous elements. Then, for each block,
we inspect the required bitwidths for the delta-compressed
docIDs and term frequencies and compress them together
on a per-block basis.
Per-Block Metadata. Since we perform bit-packing at a
block granularity, we need to store some metadata for each
block. Specifically, the metadata includes the (i) number of
bits (5 bits) required to encode the docIDs in the block, (ii)
number of bits (5 bits) required to encode the term frequen-
cies, (iii) number of elements (11 bits) stored in the block, and
(iv) offset to the starting location of the compressed block
(43 bits). Thus, 64 bits of metadata are required per block.
Our scheme also maintains the raw value of the first docID
within each block, called skip value, to let the search engine
skip a block if the engine does not need to look up any value
between its skip value and that of the next block. Figure 5
shows the first three blocks of an example posting list. This
block structure also creates opportunities for inter-query
parallelism as multiple data blocks can be decompressed si-
multaneously. The skip value is added to a d-gap to obtain
the uncompressed docID.



3.2 Dynamic Block Partitioning
A naive way to partition a list into multiple blocks is to use
a fixed block size. While easy to implement, this static parti-
tioning scheme is suboptimal in terms of compression ratio.
An outlier value within a block may prevent it from using a
narrower bitwidth. On the other hand, a dynamic partition-
ing scheme uses variable block sizes. It gives the partitioner
better chances to group elements of similar bitwidths to-
gether, thus reducing the overall storage cost of a posting
list. Thus, we adopt a dynamic partitioning scheme for IIU.
Partitioning Scheme. Like previous proposals [19, 23, 24,
25], we also formulate block partitioning as an optimization
problem. Let L∆ = {l1, l2, ..., ln} be a delta-compressed post-
ing list. Each posting li is a tuple of the delta-compressed
docID and term frequency, denoted by (ldni , l

t f
i ). Suppose

B = {B1,B2, ...,Bk } represents a k-way partitioning over
L∆ so that L∆ = {Bi |Bi ∈ B} and Bi ∩ Bj = ∅ for any
i , j. Let l̄(Bi ) be the set of all the postings in Bi such that
l̄dn(Bi ) = {ldnj |lj ∈ Bi } and l̄ t f (Bi ) = {l

t f
j |lj ∈ Bi }.

Given a block Bi , the cost function C(Bi ) is defined as
the storage cost of the block. Each block Bi requires the
following information to be stored: (i) 64-bit metadata, (ii)
32-bit skip value, and (iii) bit-packed postings l̄(Bi ). Let bdni
and bt fi represent the bitwidth of docID and term frequency
after bit-packing, respectively. Then, the total cost for L∆
using the partitioning scheme is the sum of C(Bi ) over all
Bi ∈ B, which is represented as follows:

dnmax =max(l̄dn(Bi )) t fmax =max(l̄ t f (Bi )) (1)

bdni = ⌈log (dnmax + 1)⌉ b
t f
i = ⌈log (t fmax + 1)⌉ (2)

C(Bi ) = (bdni + b
t f
i ) · |Bi | + 96 (3)

Thus, our scheme should find an optimal partition of L∆
such that the overall storage cost C(B) is minimized, i.e.,
min C(B) =

∑
Bi ∈B C(Bi ) with a constraint that {|Bi | <

211 ∀ Bi ∈ B} as 11 bits are used in the per-block meta-
data to store the number of elements present in the block.
We use a dynamic programming algorithm to calculate the
storage overhead of creating a block Bi at different posi-
tions i such that the overall cost C(B) is minimized. We use
a hyper-parameter maxSize to limit the size of each block,
|Bi | < maxSize .
Note that this partitioning scheme controls space-time

tradeoffs. On the one hand, a large block is preferred to min-
imize the storage overhead. On the other hand, large blocks
limit the amount of block-level parallelism, which eventually
limits intra-query parallelism. Based on an empirical analy-
sis (shown in Figure 14), we set maxSize to 256 to balance
the amount of intra-query parallelism and storage overhead.
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Figure 6. Overview of IIU

4 IIU Hardware Architecture
4.1 Overview
Figure 6 shows an overview of the IIU design. IIU is designed
to offload key operations involved in a search query. The of-
floaded operations include decompression, set operations (in-
tersection/union), and scoring. The host sends search queries
to IIU via a command queue. Then IIU processes each query
in two phases: (i) scheduling phase and (ii) computation phase.
During the scheduling phase, the query scheduler allocates a
query to a block reader-scheduler pair. During the compu-
tation phase, the block reader loads the compressed posting
list, while the block scheduler loads per-block metadata and
skip values. Each compressed block is allocated to an IIU
Core to perform decompression, set operations, and finally
scoring.
Host CPU-IIU Interface. IIU provides two primitive func-
tions for the host to communicate with the IIU .

void init(file invFile)

The init function is used to configure an IIU. It sets up
a communication pipe between the host and IIU using a
memory-mapped register. It also loads the inverted index
data structure from file invFile to a non-cacheable mem-
ory region, which obviates the need for managing cache
coherence in IIU.

val search(val qtype, addr list0, size_t
length0, addr list1, size_t length1, addr
result, val numCores)

The search function is invoked to send a query to IIU.
The type of the query is specified by the qtype argument.
The start address and size of an input posting list is given by
list0 and length0, respectively. In the case of intersection
and union queries, optional arguments list1 and length1
can be used to provide information about the second posting
list. The return values are written to memory at the address
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result. This function also provides an argument numCores
to specify the number of IIU Cores to be assigned to this
query. This allows a programmer to specify a priority to the
query. For example, multiple cores can be assigned to a single
query requiring low latency. More details are discussed in
Section 4.4.
Memory Access from IIU. All memory requests from the
IIU are handled by the Memory Address Interface (MAI)
located at the memory controller. MAI maintains a table
of 128 entries to store the requested address with a unique
requestor ID. This table plays the same role as a miss status
handling register (MSHR) in the host CPU. Then the memory
controller issues the pending requests to DRAM. When a
response arrives at MAI, it relays the response data to the
corresponding requestor using its unique ID. Also, since the
host CPU uses the virtual address for accessing the inverted
index, duplicate TLB entries are maintained within IIU.

4.2 IIU Query Processing Flow
IIU supports three major query types: single term, intersec-
tion, and union. We describe below the execution flow for
each query type once a query is assigned to a block reader-
scheduler pair and enters the computation phase.
Single Term Query. For a single term query, all elements
are decompressed from the posting list of the queried term.
Figure 7(a) shows the execution flow of decompressing a
posting list L0. ❶ The query scheduler sends the starting
address of the compressed list L0 to the block reader and the
corresponding address of its metadata to the block scheduler.
As described in Section 3.2, the compressed posting list is
partitioned into blocks, and per-block metadata maintains
their sizes. ❷ The block reader and scheduler request the
compressed list and metadata, respectively, and ❸ store them

into their internal buffers at a 64-byte granularity. ❹ Then,
the block scheduler finds an available IIU Core and schedules
the block for decompression. Each IIU Core contains two
decompression units (DCU) and two scoring units (SU). The
block scheduler assigns a disjoint set of blocks to each DCU.
The number of blocks that can be decompressed in parallel
is limited by the number of DCUs available to the block
scheduler.❺ The DCU fetches the compressed block from the
block reader buffer. ❻ It decompresses all docIDs and their
term frequency (tf). Then, the scoring unit (SU) calculates
their BM25 score and ❼ writes the result to memory.
Intersection Query. An intersection query retrieves the
common documents between two input posting lists. Fig-
ure 7(b) shows the execution flow of an intersection opera-
tion between two posting lists L0 and L1 (|L0| < |L1|). We
adopt the SvS intersection scheme, described in Section 2.2.
Since this scheme uses binary search on the longer list to
reduce the number of decompressed blocks, IIU performs
membership testing using L1 skip list. It identifies which
blocks in L1may contain elements from L0 and decompresses
only those blocks. Similar to the single-term query ❶ - ❺,
IIU loads and schedules the blocks in L0 for decompression
using an available IIU Core. An IIU Core contains two DCUs,
but the block scheduler uses only one of them (DCU0) for
scheduling L0 blocks. ❻ After DCU0 decompresses a docID
in L0, the binary search unit (BSU) inside the IIU Core is
used to find a candidate L1 block. ❼ DCU1 loads the candi-
date L1 block from memory and decompresses it. Once both
DCUs have decompressed docIDs, ❽ the IIU Core performs
intersection by discarding the smaller of the two docIDs
at the head of each DCU. If both docIDs are matched, they
are sent to the two scoring units (SUs), and their scores are
added. Since multiple L0 docIDs can fall in the same L1 block
during the binary search, the IIU Core should process all
L0 elements before fetching a new L1 block. ❾ Finally, the
result of the intersection is written to memory.
Union Query. A union query finds the set of documents
that are present in at least one of the two input posting lists.
Like the other types, IIU uses the block reader and scheduler
to load and schedule an input list to an IIU Core. But, instead
of loading a single list, the block reader and scheduler load
both lists simultaneously. The two DCUs and SUs in an IIU
Core are utilized to decompress and score each list in parallel.
Similarly to a 2-way merge sort, the IIU Core performs union
such that the smaller docIDs are written to the memory first.
Matched docIDs are identified, and their scores are merged
by addition. Then the final score is written to memory. Once
a DCU finishes processing the entire list first, the remaining
postings from the other DCU are flushed to memory.

4.3 IIU Hardware Building Blocks
In this section, we describe the IIU hardware modules in
detail. In particular, we divide them into two major parts: (i)
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Figure 8. (a) Allocation of BR buffers to compressed list L;
(b) Illustration of BR and B-SCH operations

block reader and block scheduler at the frontend, and (ii) IIU
Core and its sub-modules at the backend.
Block Reader (BR) and Block Scheduler (B-SCH). The
BR module reads the compressed posting list for a query
term to store it in local stream buffers. Likewise, the B-SCH
module reads the corresponding per-block metadata and skip
list into its local buffers. Once the metadata is fetched, it finds
an available IIU Core and schedules the corresponding block
for computation. If there are no free IIU Cores and the B-SCH
buffer is full, future reads are stalled. An allocated IIU Core,
in turn, fetches the compressed block data from the BR buffer.
Since a single buffer entry may contain compressed postings
for multiple blocks, the BR maintains a fetch counter per
buffer entry to track which block data is actually consumed.
Once the entire entry is fetched by IIU Cores, it is cleared, and
the next 64-byte chunk is eagerly prefetched from memory.
Running Example. Figure 8 illustrates a running example
of how BR and B-SCH modules fetch compressed data and
schedule blocks for computation. During the first two cycles,
B-SCH fetches the metadata for Block 0 (L[0]) and 1 (L[1])
and schedules them to DCU 0 and 1, respectively. At the same
time, BR sends a request to fetch the compressed block data.
In this example, BR has two stream buffer entries with 64
bytes per each. DCUs calculate the start and end index of the
BR buffer containing the block data they are processing. At
Cycle 1 and 2, both DCUs send a request to fetch data from
the first BR buffer entry (index 0) and waits for its response.
BR receives the data for the first buffer entry after 40 cycles
and then services the pending DCU requests. At Cycle 41,
since all the data in the first entry are read by the DCUs, the
entry is evicted, and BR sends a new block prefetch request
to memory. Meanwhile, it receives a response for the second
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buffer entry, which contains the remaining data of Block 1
and the first part of Block 2. At Cycle 50, DCU 1 finishes
computation on the first part of Block 1 data read from the
BR buffer index 0 and fetches the remaining data from the
next buffer entry (index 1). This process continues for all the
remaining blocks.
IIU Core: Overview. The IIU Core supports the three query
types: single term, intersection, and union. Figure 9 shows a
simplified datapath of IIU Core showing three major compo-
nents: (i) decompression unit (DCU), which decompresses d-
gap-term frequency pairs (d-gap, tf) in the block; (ii) scoring
unit (SU), which calculates the BM25 score for each decom-
pressed (docID, tf) pair; and (iii) binary search unit (BSU)
which finds a candidate block for fast intersection opera-
tion. Apart from these components, IIU Core employs recon-
figurable connections (i.e., MUXes) to set up the datapath
depending on the query type. In what follows, we describe
each component in detail.
IIU Core: Decompression Unit (DCU). Figure 10 shows
the structure of a DCU. ❶ The DCU first receives the skip
value and metadata (containing bitwidth of d-gap and tf) of
the scheduled block from the block scheduler. ❷ It fetches
data from the block reader at a 64-byte granularity and stores
it in a local buffer. The stored data is a list of (d-gap, tf)
pairs, which are bitpacked together as described in Section 3.
❸ A (d-gap, tf) pair is extracted and decoded sequentially
every cycle using shifting and bit-masking based on their
bitwidth. ❹ DCU adds the previous (raw) docID to the newly
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decoded d-gap, and zero-extends tf to 32 bits. ❺ The final
uncompressed (docID, tf) pair is sent to the next stage in the
IIU Core pipeline, and the previous docID gets updated.
IIU Core: Scoring Unit (SU). The SU calculates the BM25
score for each input (docID, tf) pair. The BM25 scoring func-
tion (in Section 2.2) has multiple arithmetic operations. To
reduce the strength of computation, IIU pre-computes a few
sub-expressions at index time, which are reused at query
time. For each possible query term qt , we pre-calculate its
inverse document frequency id f (qt ) and store id f (qt ) =
id f (qt ) ∗ (k1 + 1) in metadata. Also, for each document
d , we pre-calculate its relative length and store dl(d) =

k1 ∗ (1 − b + b ∗
|d |

avдdl ) as well. At query time SU loads
id f (qt ) at the beginning of query processing and performs
a memory read for each per-document constant dl(docID)
as it receives (docID, tf) pairs. It uses a single adder and
a pipelined fixed-point divider to compute a partial score
s = 1

t f +dl (docID)
. Finally, SU computes the final BM25 score,

s = id f (qt ) · s · t f , and sends the (docID, s) pair to the next
stage in the IIU Core pipeline. SU takes 18 cycles to output a
(docID, s) pair, but it is fully-pipelined; i.e., 18 inputs can be
simultaneously in flight for processing.
IIU Core: Binary Search Unit (BSU). An IIU Core uses
BSU during an intersection query. It identifies the candidate
blocks in a longer posting list, which may contain docIDs
from a shorter posting list. To this end, BSU performs a binary
search over the skip list of the longer list (not over postings
inside a block), which is fetched from memory. However,
we find there is a substantial amount of reuse (locality) in
skip list traversal as we always search for docIDs in sorted
order. Thus, we propose to use a small traversal cache with 32
entries to reduce memory traffic. The traversal cache stores
the skip values on the traversal path from the previous search.
In this way, we can go without accessing memory for the
common prefix of the search with the last traversal.
Figure 11 shows an example of how the skip list is tra-

versed where the skip values are {1, 8, 19, 37, 48, 54, 76} and
the docIDs being searched are 40 and then 64. It traverses
the skip list as follows: (1) For docID 40, BSU performs a
full binary search on the skip list to find the candidate block
whose skip value is 37. As a result, the traversal path (37 →
54 → 48) is stored in the traversal cache. (2) For docID 64,
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Figure 12. Intra-query, inter-query, and hybrid parallelism
in IIU

BSU first uses the traversal cache to perform traversal until
the path diverges. It identifies a node with skip value 54 is
the point of the restart. From there, BSU fetches the skip
values from memory and finishes the traversal. (3) The block
with skip value 54 becomes the candidate block as docID
64 is smaller than the next skip value 76. (4) BSU updates
the traversal cache with the new path by replacing the skip
value 48 with 76.

4.4 Query Parallelism
IIU can flexibly allocate IIU Cores to improve query latency
or throughput to serve a variety of deployment scenarios.
This is realized by supporting both intra- and inter-query
parallelism in IIU. Each IIU consists of multiple BR and B-
SCH pairs as well as IIU Cores. It also includes reconfigurable
interconnects between them. During the scheduling phase,
the query scheduler configures this interconnects based on
a QoS requirement from the user.
Figure 12 shows three different configurations where (a)

has minimum query latency by allocating all the available
IIU Cores for a single query, hence maximizing intra-query
parallelism; (b) has maximum throughput by using all the
available BR and B-SCH pairs with each one connected to a
single IIU Core, hence maximizing inter-query parallelism;
and (c) takes a hybrid approach by using multiple BR and
B-SCH pairs and IIU Cores to run both low-latency and high-
throughput queries together.

4.5 Handling Complex Queries and Top-k Selection
Complex Queries. IIU can process complex queries with
multiple terms and set operators like (L0 ∪ L1) ∩ (L2 ∪ L3).
These queries are represented using a binary expression
tree, where the leaf nodes are query terms, and non-leaf
nodes are set operations. IIU can recursively evaluate the
left and right subtrees and then apply the root set operation
to the output. Inter-query parallelism can be exploited when
evaluating multiple subtrees in parallel. Since the evaluation
of a subtree requires operations on an uncompressed list, IIU
can be trivially extended to accelerate only set operations
while bypassing the DCU.



1 vector<docID> top−k(vector<pair<docID, score>>
candidate, int k)

2 MinHeap<key=docID, value=score> pq
3 for curr in candidate
4 if (pq.size() < k)
5 pq.push(curr)
6 else if (pq.top().value < curr.score)
7 pq.pop()
8 pq.push(curr)
9 return pq.keys()

Figure 13. Pseudocode of top-k Selection

Top-k Selection. The last step in query processing is using
the computed scores to retrieve the documents with top-
k scores. Though IIU offloads scoring from the host CPU,
we run the top-k selection process on it. Figure 13 shows
the pseudocode of our top-k selection algorithm. The host
CPU maintains a priority queue of size k and reads the (do-
cID, score) pairs written by IIU to memory and updates the
priority queue.

5 Evaluation
5.1 Methodology
Evaluation Model.We evaluate IIU using a custom cycle-
level simulator integrated with DRAMSim2 [26]. Table 1 sum-
marizes the system parameters we use to evaluate Lucene
and IIU. Lucene is a search engine library powering some
of the most popular enterprise search engines such as Elas-
ticsearch [6] and Apache Solr [5], representing the state-
of-the-art. We also implement IIU modules in RTL using
Chisel3 [27], which have been extensively verified using
realistic test cases. We synthesize IIU RTL using Synopsys
Design Compiler with TSMC 40nm standard cell library for
area and power estimation. We also use ARM Artisan mem-
ory compiler to generate buffer/queue structures. We use
FastPFor [28] C++ library, which contains multiple integer
compression schemes to compare the performance of our
compression scheme with other existing schemes.
Workloads. We evaluate IIU performance using two real
web datasets. One is CC-News [29], news articles that have
been crawled from news sites around the world through
CommonCrawl. This data is publicly available, and we only
parse English articles among crawled news from January
through December 2017 by following the methodology [30].
The second dataset, ClueWeb12 [7], is provided by CMU for
research purposes, crawled by Hetrix web crawler. Pisa li-
brary [31] is used to turn ClueWeb12 into inverted index form.
CC-News contains 29,948,077 documents and 84,940,183
unique terms, whereas ClueWeb12 contains 52,343,021 docu-
ments and 133,248,235 unique terms. As for query, we uni-
formly sample 100 single-term (for single term) and double-
term (for intersection and union) queries from TREC 2006

Host Processor
Core Intel(R) Core(TM) i7-7820X CPU @ 3.60GHz
L1 $ 32KB I-cache, 32KB D-cache
L2 $ 1MB (Private, Unified)
L3 $ 11MB (Shared, Unified)

DDR4 Memory System
Organization DDR4-2400, 4 channels, 128GB

Timing tCK = 0.833ns, tRAS = 32ns, tRCD = 14.16ns,
tCAS = 14.16ns, tWR = 15ns, tRP = 14.16ns

Bandwidth 76.8 GB/s (19.2 GB/s per channel)
IIU Configuration

IIU 8 (Block Reader, Block Scheduler), 8 IIU Core @ 1.0GHz
IIU Core 2 Decompression unit, 2 Scoring unit, 1 BinarySearch unit
Table 1. Architectural parameters for evaluation

Dataset Lucene Pfor OptPfor SIMDPfor VByte IIU
CC-News 7.58× 4.41× 18.57× 5.69× 3.99× 13.39×
ClueWeb12 3.77× 4.40× 7.91× 5.08× 3.99× 5.54×

Table 2. Compression ratio (higher is better)
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Terabyte Track [32] with only those terms present in each
dataset.

5.2 Compression Efficiency
Table 2 summarizes the compression ratio, i.e., the size of an
uncompressed list over the size of a compressed list, for our
scheme, Lucene, and other existing compression schemes.
Compared to Lucene, which is our baseline, IIU reduces
the compression ratio (posting) by 47% (ClueWeb12) and
76% (CC-News). These savings are mainly attributed to the
dynamic partitioning scheme of IIU outperforming the static
partitioning scheme of Lucene with a fixed block size of 128
elements. Moreover, the size of the metadata block is smaller
in IIU than Lucene, which maintains additional per-block
metadata to accelerate query processing. Compared to other
schemes, IIU achieves a higher compression ratio except for
OptPfor. One thing to note is that Pfor and its variants are
not suitable for compressing unsorted data, they require a
separate scheme for compressing term frequency, which is
not sorted.
Figure 14 quantifies time-space tradeoffs in selecting the

maxSize parameter used for the partitioning scheme in IIU.
This parameter puts a limit on the maximum number of
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postings within a block. We overlay IIU speedups when
processing 100 queries with the compression ratio for a range
of maxSize values. For this experiment, we exploit intra-
query parallelism to process one query at a time. Generally,
the speedup increases and the compression ratio decreases
as maxSize decreases. The increase in speedup is due to a
higher degree of intra-query parallelism in IIU, whereas the
decrease in the compression ratio is due to an increase in
block count, which in turn increases the metadata size. We
determine that 256 is the optimal value for maxSize as there
is no increase in speedup for a smaller value, and a decrease
in compression ratio is negligible (<1%) compared to the
best case (maxSize=2048). Furthermore, while shown in the
figure, we evaluate IIU using Lucene’s static compression
scheme to see a comparable speedup number but a 46% lower
compression ratio than our scheme.

5.3 Performance Results
Query Latency. Figure 15 compares the normalized average
latency of IIU and Lucene on a low-load system. Thus, we
assume IIU is configured to optimize query latency by ex-
ploiting intra-query parallelism (as in Figure 12(a)). Note that
Lucene does not exploit any intra-query parallelism and thus
utilizes only one core to process a single query. We evaluate
IIU with a varying number of IIU Cores, where IIU-X repre-
sents X IIU Cores connected to a single BR and B-SCH pair.
The results demonstrate that IIU has much lower latency
than Lucene by effectively exploiting intra-query parallelism.
IIU-8 achieves over 13.1× latency reduction on single term
queries, over 40.4× reduction on intersection, and around
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10× reduction on union. Single term queries do not observe
a noticeable extra speedup with additional IIU Cores because
the top-k selection time (performed on CPU) becomes the
more dominant portion of the runtime. For union queries,
IIU shows the same latency regardless of the number of IIU
Cores allocated as the merge unit becomes the bottleneck
beyond a single IIU Core.
Query Throughput. Figure 16 compares the normalized
average throughput of IIU and Lucene. For this experiment,
IIU is configured to exploit inter-query parallelism (as in
Figure 12(b)), and Lucene also utilizes multiple CPU cores to
process the queries in parallel. We evaluate IIU with a vary-
ing number of IIU Cores, where IIU-X represents the number
of BR and B-SCH pairs and the same number of IIU Cores
in a 1-1 mapping. In the IIU-8 configuration, the average
speedup of IIU over Lucene is 7.1× on single terms, 11.3× on
intersection, and 3.7× on union. As we keep increasing the
number of IIU Cores, the speedup is eventually limited by
the available memory bandwidth. Among the three types of
queries, intersection queries demonstrate the best speedup as
they benefit from the specialized intersection and decompres-
sion hardware. Union queries show relatively low speedups
(i.e., a half of decompression speedups) as the merge unit,
which merges two decompressed blocks from two DCUs, be-
comes the pipeline bottleneck. Overall, IIU achieves robust
performance over the two datasets used for evaluation.

The throughput gains are attributed to two major sources:
specialization and parallelism. For query throughput IIU-1
achieves a 14.6× speedup over the single-threaded Lucene
(not shown in the Figure 16), which quantifies the benefits of
specialization. Utilizing eight IIU cores achieves an extra 3.6×
speedup on top of it, quantifying the benefits of parallelism.
In Figure 14 the IIU compression scheme gives only a 1.2×
speedup over Lucene; however, it saves a substantial amount
of memory space for a higher compression ratio.
Runtime Breakdown.As stated in Section 4.1, the last step
of query processing, top-k selection, is performed on the host
CPU. Thus, when intra-query parallelism is exploited, the
portion of the top-k selection operation gets larger due to
Amdahl’s Law as we increase the IIU Core count. Figure 17
shows the portion of top-k selection for IIU-8. For single
term queries the query latency is already dominated by the
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Figure 19. Scalability analysis of IIU on high bandwidth
memory

top-k selection operation; for intersection queries, there is
some room for further scaling down the portion of IIU with
additional cores, but query time will be eventually limited
by the top-k operation as well.
Still, inter-query parallelism is free from this limitation,

and IIU can achieve scalable throughput to the number of
IIU Cores. In this setup, memory bandwidth will eventually
become the limiting factor of throughput scaling. Figure 18
shows the bandwidth utilization of IIU for both datasets
when it is configured to exploit inter-query parallelism. Ex-
cept for the intersection query, the performance of IIU be-
comes memory bandwidth-bound as the number of IIU Cores
increases.
Scalability. The main limiting factor of scaling throughput
is memory bandwidth. Fortunately, emerging 3D stacked
DRAM technologies [33] offer much higher bandwidth (with
higher latency) than the conventional DDR4 DRAM system.
Figure 19 presents the bandwidth utilization of IIU on CC-
News with inter-query parallelism assuming an HBM-like
memory system with higher memory bandwidth. Intersec-
tion queries do not fully utilize bandwidth as the result set
often becomes small after the intersection. However, for sin-
gle term and union queries, the bandwidth usage scales as we
increase the number of IIU Cores. In turn, this leads to a sig-
nificantly higher speedup than on the original DRAM system.
Increased DRAM bandwidth can also benefit CPUs; however,
it is much more difficult to saturate memory bandwidth with
CPUs as they have much lower throughput density in terms
of area and power than custom accelerators.

Component Area
(mm2)

Power
(mW )

# of
component

Total
Area
(mm2)

Total
Power
(mW )

Block Reader 0.020 13.9 8 0.160 111.7
Block Scheduler 0.017 11.0 8 0.143 88.3
IIU Core 0.335 115.6 8 2.687 925.4
Command Queue 0.004 2.7 1 0.004 2.7
Query Scheduler 0.009 6.4 1 0.009 6.4
MAI 0.101 9.6 1 0.101 9.6

Total Area : 3.106mm2 / Average Power : 1.144W
Table 3. Total area/power usage of IIU

5.4 Area, Power and Energy Results
Area. Table 3 shows the area breakdown with individual
components of IIU. Among them, the IIU Core accounts
for the dominating portion with its many processing units
and buffers. A single IIU Core occupies a 0.34mm2 of area,
and the total area amounts to 2.69mm2 with 8 IIU Cores.
Following the IIU Cores, block readers and block schedulers
take 0.30mm2 area, and system-wide components (e.g., MAI,
Command Queues) 0.11mm2 of area, thus making the total
area of 8-core IIU 3.11mm2.
Power. Table 3 also shows an average power breakdown
of IIU. Compared to the CPU platform used for evaluation,
whose TDP is 140W, IIU consumes 122.4× less power. This
large power gap is attributed to the flexibility-efficiency
tradeoff. Operations on the inverted index are composed
of relatively simple integer instructions for which general-
purpose CPUs are not cost-effective. Instead, IIU benefits
greatly from specialization and achieves both performance
speedups and power savings at the same time.
Energy. Figure 20 shows normalized energy consumption
that Lucene and IIU spend on processing a query. As shown
in the figure, IIU itself consumes very little energy, which is
not surprising as its power consumption is orders of mag-
nitude smaller than that of CPUs. However, since IIU still
performs top-k selection on CPUs, the total amount of en-
ergy spent is dominated by CPUs for IIU. Even with this
consideration, IIU still improves the energy efficiency of
full-text search by 18.6× on average across all cases.
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Figure 20. Normalized energy consumption

6 Related Work
Inverted Index Compression. Inverted index has been
used over decades, and many compression schemes have
been proposed for the inverted index [14, 16, 17, 18, 19, 34].
VByte [14, 34] is a classic byte-aligned compression scheme,
which features a simple structure and fast sequential de-
coding speed. PforDelta [16] is a well-known compression
scheme that compresses most of the values in a block and
maintains a separate array for exception values that can-
not be compressed with a smaller bitwidth. There are many
variants of this scheme such as OptPforDelta [17], NewP-
forDelta [17], SIMDPforDelta [18] to reduce its space over-
head and exploit modern SIMD instructions. We choose bit-
packing compression [18] for our hardware accelerator as it
requires no additional data structure (e.g., an exception list),
which is complex to implement efficiently in hardware.

Also, there are several proposals for optimizing the par-
titioning scheme to reduce the space overhead [19, 23, 35,
36]. They employ various methods such as dynamic pro-
gramming and approximation to find an optimal partition
to minimize space overhead. However, these partitioning
schemes are better suited for CPU architectures with multi-
level caches. In contrast, our partitioning scheme is spe-
cialized for IIU hardware. Also, it flexibly controls tradeoffs
between the compression ratio and the amount of block-level
parallelism to balance storage requirement and performance.
Software Optimization for Inverted Index Operations.
There are various software works for accelerating opera-
tions on inverted index [19, 20, 37, 38, 39, 40]. MILC [19] is
a novel compression scheme that is highly optimized for
fast membership testing and reducing space overhead of in-
verted lists. They leverage CPU features and cache hierarchy
for SIMD acceleration and cache-aware compression. Even
though they get impressive performance improvement using
these optimizations, they still cannot fully exploit memory-
level parallelism because of the limited size of load/store
queues and instruction window in general-purpose CPUs.
Culpepper et al. [20] propose an efficient intersection scheme
and a simple additional data structure for supporting fast
intersection. Lemire et al. [37] propose a SIMD galloping
algorithm for fast intersection. Zhang et al. [38] propose
direct document analytics on compressed data to reduce the

space overhead and processing time. However, these works
handle only part of key operations in a search process.

Also, there are proposals to exploit the high degree of par-
allelism on GPUs [11,12,13,41,42,43,44]. Griffin [11] exploits
fine-grained scheduling between CPU and GPU depending
on the characteristic of each query. They propose a parallel
decompression and intersection scheme for query processing.
GENIE [41] is a generic inverted index framework on GPU,
which supports parallel similarity search. Wang et al. [42]
propose an efficient GPU caching method to improve list
intersection and top-k ranking. Ao et al. [44] propose a novel
technique for optimized parallel intersection and efficient
decompression on GPUs. However, all these works focus
on improving either query latency or throughput, but not
both. Instead, IIU flexibly exploits both intra- and inter-query
parallelism depending on deployment scenarios, so it can
increase the query throughput and reduce the latency.
Hardware support for inverted index. There are propos-
als for hardware support for inverted index [45, 46, 47]. Gun-
ther et al. [45] propose custom hardware for supporting text
search and scoring documents for relevance. Yan et al. [46]
propose an index serving accelerator with a new compres-
sion scheme combining Huffman coding and VByte [14, 34].
Pinaka [47] is FPGA-based custom hardware for supporting
essential operations of web search engines such as decom-
pression, boolean operations, and ranking, which shares the
same spirit with IIU. However, all these hardware systems
cannot fully utilize the abundant DRAM memory bandwidth
due to limited parallelism and/or do not flexibly support both
intra- and inter-query parallelism.

7 Conclusion
This paper presents IIU to accelerate query processing on
an inverted index with low storage overhead. To achieve
both low latency and high throughput, we co-design an in-
dexing scheme and a hardware accelerator. For the indexing
scheme, we propose a hardware-friendly dynamic partition-
ing scheme to achieve high compression ratio. IIU is designed
to fully exploit memory-level parallelism for decompression,
set operations, and scoring. Our evaluation with a cycle-level
simulator with two real datasets demonstrates an average
of 13.8× latency reduction, 5.4× throughput increase, and
18.6× reduction in energy consumption over Apache Lucene,
the state-of-the-art full-text search framework.
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