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Abstract—Graphs are one of the key data structures for
many real-world computing applications and the importance
of graph analytics is ever-growing. While existing software
graph processing frameworks improve programmability of graph
analytics, underlying general purpose processors still limit the
performance and energy efficiency of graph analytics. We ar-
chitect a domain-specific accelerator, Graphicionado, for high-
performance, energy-efficient processing of graph analytics work-
loads. For efficient graph analytics processing, Graphicionado
exploits not only data structure-centric datapath specialization,
but also memory subsystem specialization, all the while taking ad-
vantage of the parallelism inherent in this domain. Graphicionado
augments the vertex programming paradigm, allowing different
graph analytics applications to be mapped to the same accelerator
framework, while maintaining flexibility through a small set
of reconfigurable blocks. This paper describes Graphicionado
pipeline design choices in detail and gives insights on how
Graphicionado combats application execution inefficiencies on
general-purpose CPUs. Our results show that Graphicionado
achieves a 1.76�6.54⇥ speedup while consuming 50�100⇥ less
energy compared to a state-of-the-art software graph analytics
processing framework executing 32 threads on a 16-core Haswell
Xeon processor.

I. INTRODUCTION

Starting out as a recreational mathematical puzzle known as
the Königsberg bridge problem [9] in the early 18th century,
graph theory and topology have since developed into well-
known representations of many-to-many relationships, solving
research problems in the areas of network communications,
social informatics, natural language processing, system biology,
and cyber security. In the era of producing and consuming
“big data”, there has been a resurgence of interest in devel-
oping graph analytics applications to gain new solutions and
insights; examples include Google’s citation ranking algorithm,
PageRank [30], Facebook’s semantic search engine, Graph
Search [44], Ayasdi’s topological data analysis engine that
led scientists to more effective breast-cancer treatments [15],
and MITRE’s cyber warfare analytics management software,
CyGraph [48], that correlates intrusion alerts to known vul-
nerability paths. This renewed interest spurred the software
community to develop more efficient graph analytics processing
frameworks [4, 5, 23, 25, 33, 35, 46] as well as the hardware
community to create hardware that can execute graph analytics
applications with more efficiency than what the off-the-shelf,
general-purpose processors and systems can provide [11]. To

that end, our research focuses on exploiting the structured
data movements and computation patterns that graph analytics
applications exhibit to improve efficiency, and on mitigating the
challenges such applications face when executing on traditional
CPUs.

Certain key characteristics must be accounted for when
considering graph domain accelerators. First, graph analytics ap-
plications are often memory latency- or bandwidth-bound. For
example, graph traversals often require many memory accesses
relative to only small amounts of computation. Unfortunately,
current general purpose processors are not the ideal platform
for executing such applications. Their inefficiencies include 1)
waste of off-chip memory bandwidth from inefficient memory
access granularity—loading and storing 64-byte cacheline
data while operating on only a portion of the data (e.g., 4
bytes), 2) ineffective on-chip memory usage—hardware cache
is oblivious to graph-specific datatypes and does not effectively
retain high locality data on-chip, and 3) mismatch in execution
granularity—computation and communication of data using
x86 instructions instead of utilizing domain-specific datatypes
for graph analytics such as edges and vertices. To overcome
these limitations, we propose a set of datatype and memory
subsystem specializations in addition to exploiting the inherent
parallelism of graph workloads to alleviate these performance
bottlenecks.

We architect, design, and evaluate a domain-specific acceler-
ator for processing graph analytics workloads. Graphicionado
features a pipeline that is inspired by the vertex programming
paradigm coupled with a few reconfigurable blocks; this
specialized-while-flexible pipeline means that graph analytics
applications (written as a vertex program) will execute well
on Graphicionado.

This paper makes the following contributions:

• A specialized graph analytics processing hardware pipeline
that employs datatype and memory subsystem special-
izations while offering workload-specific reconfigurable
blocks called Graphicionado.

• An in-depth tour of the various microarchitecture opti-
mizations to provide performance and energy efficiency,
techniques to extract more parallelism, and tactics to
support large-scale real-world graphs using slicing and
partitioning.†This work was done while the author was working at Intel Corporation
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GraphMat Processing Model
1 For each Vertex V
2 For each incoming edge E(U,V) from active vertex U
3 Res  Process_Edge (Eweight, Uprop, [OPTIONAL]Vprop)
4 Vtemp  Reduce(Vtemp, Res)
5 End
6 End
7 For each Vertex V,
8 Vprop  Apply(Vtemp, Vprop, Vconst)
9 End

Fig. 1: Simplified GraphMat processing model. Note that this is slightly
different from the original GraphMat [46] in that it integrates Send_Message
with Apply.

II. BACKGROUND AND MOTIVATION

A. Software graph processing frameworks

Software graph processing frameworks typically aim to
provide three things to users—ease of programming, improved
performance, and efficient scalability that allows the workloads
to scale up and out. In an effort to improve programmability
of graph algorithms, different programming models have been
proposed. Examples include vertex programming [4, 33, 35, 46],
sparse matrix operations [8], graph domain-specific languages
[18], and task-based models [23]. In addition, the software
frameworks vary widely in their performance and scalability
as well, especially when compared to native applications [43].

Of the various programming interfaces for graph frameworks,
the most popular is vertex programming. In this model,
the entire algorithm can be expressed as operations on a
single vertex and its edges. This programming model is
generally considered easy to use and not overly restrictive, but
implementation performance can vary significantly in practice.
GraphMat [46] has been shown to have the best performance
amongst many different software graph frameworks on a single
node. While the exact programming APIs for each vertex-
programming-based graph framework differ slightly, they all
have similar structure.

Fig. 1 shows a vertex programming example using three
essential operators—Process_Edge, Reduce and Apply. In a
vertex program, each vertex has an application-specific vertex
property that is updated iteratively. At every iteration, each
vertex is inspected to check if there are incoming edges from
active vertices (i.e. vertices whose states were updated in the
last iteration). Then, for all incoming edges from active vertices,
the corresponding vertex processes each edge separately using
Process_Edge and performs reduction using Reduce to a form
single value. Lastly, the reduced value, its vertex property,
and a constant vertex property are used to update the current
state of the vertex using Apply. Vertices whose properties have
changed become active for the next iteration and iterations
proceed until there are no more active vertices or until a
maximum number of iterations is specified. A few optional
parameters are user-controllable—for example, whether all
vertices are considered active in all iterations or not, and what
the convergence threshold is. This model helps specify a wide
variety of useful graph algorithms [43].

B. Algorithms

Throughout the paper, we discuss four different fundamental
graph algorithms which are representative from applications
including machine learning, graph traversal, and graph statistics.
These are core kernels and building blocks comprising the bulk
of graph processing runtime in many applications. This section
provides a brief introduction to these algorithms and shows
how each algorithm maps to the programming model.
PageRank (PR) The PageRank algorithm calculates scores of
vertices in a graph based on some metric (e.g., popularity). Web
pages are represented as vertices and hyperlinks are represented
as edges. The equation below shows how the PageRank score
is calculated for each vertex. ↵ is a constant and U

deg

is the
out-degree and a constant property of vertex U . In PageRank,
all vertices are considered active in all iterations.

V
score

= ↵+ (1� ↵) ·
X

U|(U,V )2E

U
score

U
deg

Breadth-First Search (BFS) BFS is a widely-used graph
search algorithm from the Graph500 Benchmark, operating on
an unweighted graph [1]. Starting from a given initial vertex, the
algorithm iteratively explores neighboring vertices and assigns
the distance to each vertex connected to the active vertices
of the iteration. The equation below shows how the distance
is determined for each vertex adjacent to active vertices at
iteration t.

V
dist

= min(V
dist

, t)

Single Source Shortest-Path (SSSP) This is a graph traversal
algorithm which computes the distance between a single source
and all other vertices in a weighted graph. Similar to BFS, the
algorithm iteratively explores neighboring vertices from starting
vertices and assigns the distance to each vertex connected to
the active vertices of the iteration. The main difference between
BFS and SSSP is that SSSP utilizes edge weights to determine
the distance while BFS does not. The equation below shows
how the distance is determined for each vertex adjacent to
active vertices.

V
dist

= min

U|(U,V )2E

(V
dist

, U
dist

+ E
weight

(U, V ))

Collaborative Filtering (CF) CF is a popular machine learning
algorithm for recommendation systems [2]. It estimates users’
ratings for a given item based on an incomplete set of (user,
item) ratings. The assumption of the algorithm is that a (user,
item) rating is determined by the match of the latent features
between users and items and the goal of algorithm is to calculate
the hidden features of each vertex (i.e. user and item). For
this purpose, a matrix factorization based on gradient descent
is performed. The equation below shows how the feature in
each vertex is calculated. V

f

is a feature vector whose length
is K (note that K=32 is used throughout the paper); � and
� are constants. Collaborative Filtering runs on an undirected
bipartite graph (i.e., a graph whose vertices can be divided
into two disjoint sets — in CF, the users set and the items set



Algorithms Process_Edge (E
weight

, U
prop

, [Optional]V
prop

) Reduce (V
temp

, Res) Apply (V
temp

, V
prop

, V
const

)

PageRank U
prop

V
temp

+ Res (↵+ (1� ↵)V
temp

)/V
deg

BFS N/A min(V
temp

, IterCount) V
temp

SSSP U
prop

+ E
weight

min(V
temp

, Res) min(V
temp

, V
prop

)

CF (E
weight

(U, V )� V
prop

· U
prop

)U
prop

� � · V
prop

V
temp

+ Res V
prop

+ � · V
temp

TABLE I: Example mapping of algorithms to programming model. For an edge E = (U, V ), U is the source vertex and V is the destination vertex.
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Fig. 2: Off-chip communication efficiency of GraphMat.

are the two disjoint sets) and all vertices are considered active
in all iterations.
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Mapping algorithms to the programming model There
can be multiple ways to map an algorithm to the vertex
programming model specified here. An example mapping for
the algorithms discussed above is shown in Table I. Note that
the V

prop

parameter for Process_Edge is an optional parameter.
In fact, many of the graph algorithms either do not need
this parameter or can be expressed without this parameter.
Nevertheless, GraphMat supports V

prop

since it improves the
programmability in some algorithms such as Collaborative
Filtering.

C. Software framework inefficiencies

It was shown previously in [43] that most platform-optimized
native graph algorithms are memory bandwidth-limited. In or-
der to identify the inefficiencies of off-chip memory bandwidth
usage, we measured GraphMat [46] bandwidth consumption
on an Intel Xeon server instrumented using Intel VTune
Amplifier [21]. The results are shown in Fig. 2.

Here, the efficiency of the off-chip communication is
defined as the ratio of off-chip memory traffic normalized
to the optimal communication case — the amount of off-
chip memory accesses in an imaginary device which has
enough on-die storage to reuse all data for each iteration
but not across iterations. GraphMat performs many more off-
chip memory accesses than the optimal case for BFS and
SSSP, because GraphMat performs cacheline-granular off-chip
random accesses and these algorithms use many non-local
4- or 8-byte accesses. These algorithms become bandwidth
limited because an entire cacheline is fetched but only a small
portion is used, resulting in bandwidth waste. PageRank’s
off-chip memory usage is much closer to optimal since it
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Fig. 3: Percentage of executed instructions for custom computation

performs much fewer random memory accesses. However, in
such cases, memory latency or computation throughput often
become performance bottlenecks. On a small input graph such
as Flickr, GraphMat can perform less off-chip accesses than
optimal because the entire graph is small enough to fit within
the 40MB LLC, and the data stays on-chip across iterations
unlike the optimal communication case.

Software graph processing frameworks typically have another
inefficiency—they must execute many instructions just to move
data around and supply data for the custom computations which
define a target algorithm. As Fig. 3 shows, for three out of the
four algorithms, fewer than 6% of the executed instructions are
for custom computations (i.e., Process_Edge, Reduce, Apply).
In other words, more than 94% of the instructions executed are
responsible for traversing the graphs (i.e., finding the relevant
edge of a vertex, etc.) and loading the required arguments (e.g.,
vertex property, edge weight) for custom computations. These
instruction overheads often result in low energy efficiency.

D. Overcoming inefficiencies

To overcome the software framework inefficiencies, we
employed two categories of solutions. First, we applied memory
subsystem specialization and architected an on-chip storage as
part of the accelerator. The on-chip storage allowed dramatic
reduction of the communication latency and bandwidth by con-
verting the frequent and inefficient random off-chip data com-
munication to on-chip, efficient, finer-granularity scratchpad
memory accesses. Second, we applied data-structure-specific
specialization or datatype specialization and formed datapaths
around processing graph analytics primitives, vertices and edges.
This further reduces peripheral instruction overheads to prepare
the operands for computation. In this work, we will demonstrate
that datatype specialization coupled with the programmable
and high-performing vertex program paradigm allows the
Graphicionado pipeline to not only balance specificity with
flexibility but also to deliver exceptional energy efficiency.



III. GRAPHICIONADO OVERVIEW

Graphicionado is a hardware accelerator specialized for
processing graph analytics algorithms. For better programma-
bility and flexibility, Graphicionado inherits the advantage
of software graph processing framework GraphMat. As in
software graph processing frameworks, Graphicionado allows
users to express specific graph algorithms by defining three
computations (Process_Edge, Reduce, and Apply). In addition,
it transparently handles all necessary data movement and
communication on-chip and off-chip to support those operations.
Graphicionado overcomes the limitations of software graph
processing frameworks by applying specializations on the
compute pipeline and the memory subsystem.

A. Graph processing model

Graphicionado Base Graph Processing Model

B Processing Phase
1 for (int i=0; i<ActiveVertexCount; i++) {
2 Vertex src = ActiveVertex[i]; // Sequential Vertex Read
3 int eid = EdgeIDTable[src.id]; // Edge ID Read
4 Edge e = Edges[eid]; // Edge Read
5 while (e.srcid == src.id) {
6 dst.prop = VProperty[e.dstid]; // [OPTIONAL] Random Vertex Read
7 VertexProperty res = Process_Edge(e.weight, src.prop, dst.prop);
8 VertexProperty temp = VTempProperty[e.dstid]; // Random Vertex Read
9 temp = Reduce(temp, res);
10 VTempProperty[e.dstid] = temp; // Random Vertex Write
11 e = Edges[++eid] // Edge Read
12 }
13 }
14 // Reset ActiveVertex and ActiveVertexCount

B Apply Phase
1 for (int i=0; i<TotalVertexCount; i++) {
2 VertexProperty vprop = VProperty[i]; // Sequential Vertex Read
3 VertexProperty temp = VTempProperty[i]; // Sequential Vertex Read
4 VertexProperty vconst = VConst[i];
5 temp = Apply(vprop, temp, vconst);
6 VProperty[i] = temp; // Sequential Vertex Write
7 if(temp != vprop) {
8 Vertex v;
9 v.id = i;
10 v.prop = temp;
11 ActiveVertex[ActiveVertexCount++] = v; // Sequential Vertex Write
12 }
13 }

Fig. 4: Pseudocode for Graphicionado processing and apply phases.

Fig. 4 shows the workflow of Graphicionado in pseudocode.
Graphicionado takes an input graph in the coordinate format.
In this format, a graph is represented as a list of vertices where
each vertex v is associated with a vertex property VProperty,
and each edge e is associated with a 3-tuple (srcid, dstid,
weight) indexed by the edge id eid. This edge list is sorted
according to the srcid and then the dstid. Before the input
graph can be fed into the Graphicionado processing pipeline,
some preprocessing of the input graph is done: an EdgeIDTable
is constructed and stored in memory. This array stores the eid
of the first edge of each vertex to allow streaming accesses of
the edges starting at a particular vertex. Graphicionado also
uses memory to store the vertex property array VProperty,
the temporary vertex property array VTempProperty, and the
constant vertex property array VConst associated with all
vertices.

Processing Phase In this phase, all outgoing edges from
every active vertex are examined and the necessary user-defined
computations, Process_Edge and Reduce, and updates to the
associated vertex properties are calculated and stored into the
temporary vertex property array VTempProperty. This phase is
only terminated when all active vertices are processed. For some
graph analytics workloads such as Collaborative Filtering, not
only does the property associated with the source vertex need
to be read and manipulated, but also the property associated
with the destination vertex, as shown in the pseudocode (line
6).
Apply Phase In this phase, properties associated with all ver-
tices are updated using the user-defined Apply function. Apply
uses input values from the vertex property array VProperty, the
constant vertex property array VConst stored in memory and
the temporary vertex property array VTempProperty computed
from the processing phase to make necessary updates to the
vertex property array. The ActiveVertex array keeps track of
which active vertices changed their property values in this
phase.

B. Hardware implementation

In this section we describe the microarchitecture of the
hardware blocks that implement the Graphicionado graph
processing model. Each module corresponds to one or more
lines of pseudocode in Fig. 4 and their physical characteristics
are obtained using the implementation methodology described
in Section VII. Fig. 5 shows a base Graphicionado pipeline
that is constructed with the modules along with small hardware
queues (4-8 entry FIFOs) between the modules for communi-
cation and connection.
Graphicionado Modules The Sequential Vertex Read per-
forms sequential memory read accesses given a starting address.
It buffers one cacheline worth of data and passes the vertex
properties one at a time to the output queue for the consumption
of the next pipe stage. This module is used in stage P1 of the
Processing phase, and A1 and A2 of the Apply phase to read
VProperty and VTempProperty.

The Sequential Vertex Write performs sequential memory
writes given a starting address. It takes the data to be stored
from the input queue and writes it to its internal buffer. When
its internal buffer has a cacheline worth of data, it performs
a write request to memory. This module is used to store the
updated VProperty in stage A4 and ActiveVertex in stage A5
during the Apply phase.

The Random Vertex Read/Write performs random reads and
writes given a vertex id. It is used to read the destination
VProperty in stage P4, read and write VTempProperty in stage
P7 and P9.

The EdgeID Read performs a read from the preconstructed
EdgeIDTable given a vertex id and outputs the eid of the
first edge associated with the input vertex id. Implementations
of this module are different for the base and the optimized
Graphicionado pipeline. Section IV-A presents an optimized
implementation.
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Fig. 5: Graphicionado base pipeline.

The Edge Read performs random and sequential reads of
the edge data given an eid. The initial access is random but
subsequent accesses are sequential. All edge data streamed in
are examined for their srcid. The module continues fetching
edge data from the memory as long as the srcid of the fetched
edges matches the srcid of the edges being processed.

The Atomic Update performs the update of the destination
VProperty in three steps. First, the module reads the VProperty
in stage P7, then it performs a Reduce computation in stage P8,
and finally it writes the modified VProperty back to memory in
stage P9. Since this is a read-modify-write update, the process
needs to be atomic for the same vertex (i.e. the same vertex
cannot be in more than one of these pipeline stages at the
same time). This hardware module enforces the atomicity in
stage P6 by stalling the pipeline and blocking the issue of the
vertex id being processed when violation of the condition is
detected. We use a small 4-way associative CAM-like structure
to enforce such atomicity (16 4-byte entries).
Custom Modules As previously described, Graphicionado
uses three user-defined custom computations – Process_Edge,
Reduce, and Apply – which express the target graph algo-
rithm. There are several options to implement these custom
computations: 1) fully reconfigurable fabric (e.g., FPGA on-
chip/on-package [26]), 2) programmable ALUs, or 3) fully
custom implementations on chip for a set of algorithms. A
user can choose among these options depending on his/her
needs. This paper uses the third option for its evaluations; we
construct the custom functions using single-precision floating
point adders, multipliers, and comparators.

IV. GRAPHICIONADO OPTIMIZATIONS

Section III presents a base implementation of the Graphi-
cionado pipeline. For this pipeline to work effectively, however,
it is important to match the throughput of each pipeline stage
to achieve maximum efficiency. This section explores the
potential bottlenecks of the base implementation and presents
optimizations and extensions to relieve the shortcomings.

A. Utilizing on-chip scratchpad memory

Improving Destination Vertex Update One of the most
significant bottlenecks in the Graphicionado pipeline is the
destination vertex update (Fig. 5 stages P6–P9). It performs
poorly because random vertex reads and writes from and to
memory are slow. Further, vertex properties need updating in
many graph algorithms are less than 8 bytes and performing

cacheline-granular memory reads and writes ends up wasting
off-chip memory bandwidth. Still further, the destination vertex
updates need to be atomic. Long-latency random accesses to
memory can potentially stall the pipeline for a long time if
the next destination to be updated is the same one that is
currently being updated. Graphicionado optimizes these random
vertex reads and writes by utilizing a specialized large on-chip
embedded DRAM (eDRAM) scratchpad memory (Fig. 6 stages
P6–P9). This on-chip storage houses the VTempProperty array
and significantly improves the throughput of random vertex
reads and writes, eliminates bandwidth waste from cacheline-
granular off-chip memory accesses by reading and writing
on-chip, and lowers the pipeline stall time by minimizing the
latency of VTempProperty accesses.
Improving Edge ID Access Another potential performance
bottleneck in the pipeline is reading the EdgeIDTable (Fig. 5
stage P2). In this stage, an eid of the first outgoing edge of
a given source vertex is read from memory. This is another
random memory access that stalls the pipeline for a long-latency
access and wasting the off-chip memory bandwidth as the eid
is only 4 bytes. As in the case with reading the destination
vertex properties, Graphicionado places this EdgeIDTable data
in the on-chip scratchpad memory as well.

Storing VTempProperty and EdgeIDTable on-chip removes
almost all random memory accesses in the pipeline. In the
case where the on-chip scratchpad memory size is not large
enough, an effective partitioning scheme is employed and
described in Section VI. The partitioning scheme allows only
portions of such data to be stored on-chip while minimizing
the performance impact.

B. Optimization for edge access pattern

While some graph algorithms (e.g. BFS and SSSP) operate
with frontiers of active vertices, there are many algorithms that
simply treat all vertices as active, such as PageRank and CF. In
PageRank and CF, instead of accessing a portion of the edges
through the EdgeIDTable, all edges in a graph are accessed
and processed for every iteration; we call these algorithms
complete edge access algorithms. For complete edge access
algorithms, stage P3 in Fig. 6 performs sequential reads from
the beginning of the edge list. This optimization along with
utilizing the on-chip scratchpad memory removes any random
off-chip memory accesses since all vertices are considered
active and the optional destination vertex property in stage
P4 is not used. A similar optimization is done in the Apply
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algorithms.

phase where stage A5 in Fig. 5 is removed and the resulting
optimized pipeline is shown in Fig. 6.

C. Prefetching
With the optimizations described above, most of the off-

chip memory accesses in Graphicionado are now sequential
accesses. Since the addresses of these off-chip memory accesses
are not dependent on any other portions of the pipeline, we can
easily perform next-line prefetches and get the data into the
accelerator before they are needed. We extend the sequential
vertex read and edge read modules (stage P1 and P3 in Fig. 6)
to prefetch and buffer up to N cachelines (N = 4 is used for
our evaluation) and configure them to continue fetching the
next cacheline from memory as long as the buffer is not full.
With this optimization, almost all of the sequential memory
access latencies can be hidden and Graphicionado can operate
at a high throughput.

D. Optimization for symmetric graphs
Most graph processing frameworks (including GraphMat)

work naturally with directed graphs. In such frameworks, an
undirected input graph is effectively treated as a symmetric
graph. That is, for each edge (srcid, dstid, weight) there
exists an edge (dstid, srcid, weight). While this approach
works, it incurs unnecessary memory accesses for complete
edge access algorithms such as Collaborative Filtering. For ex-
ample, in order to process an edge (u, v, weight), the source
vertex property VProperty[u], the destination vertex property
VProperty[v], and the edge data e = (u, v, weight) are
read and VProperty[v] updated at the end of the processing
phase. The exact same set of data will be read again later
when processing the symmetric edge (v, u, weight) and
VProperty[u] is updated this time. To reduce bandwidth
consumption, Graphicionado extends its pipeline so that it can
update both the source and the destination vertex properties
when processing an edge from a symmetric graph without
having to read the same data twice. This is reflected in the
optimized pipeline shown in Fig. 6 stages P5–P9 where this
portion of the pipeline is replicated.

E. Large vertex property support
The current Graphicionado pipeline is designed to support

processing up to 32 bytes of vertex property data per cycle.
When a large vertex property is desired, for example, Collabo-
rative Filtering implements vertex properties of 128 bytes each,

the large vertex property is simply treated as a packet involving
multiple flits where each flit contains 32 bytes. For most of
the pipeline stages in Graphicionado, each flit is processed
without waiting for an entire packet worth of data to arrive
(in a manner similar to wormhole switching). For the custom
computation stages, we wait for the entirety of the packet data
to arrive using a simple buffering scheme before computations
are performed (as in store-and-forward switching) to maintain
functionality. With proper buffering (4 flits in the case for CF),
the throughput of the pipeline is not significantly impacted.

V. GRAPHICIONADO PARALLELIZATION

With optimizations described in Section IV, Graphicionado
can process graph analytics workloads with reasonable effi-
ciency. However, thus far it is a single pipeline with theoretical
maximum throughput limited to one edge per cycle in the
Processing phase and one vertex per cycle in the Apply
phase. This section discusses further improving Graphicionado
pipeline throughput, by exploiting the inherent parallelism in
graph workloads.

A. Extension to multiple streams
A naïve way to provide parallelism in the Graphicionado

pipeline is to replicate the whole pipeline and let each of the
replicated pipelines, or pipeline stream, to process a portion
of the active vertices. In fact, this is the most common
approach in software graph processing frameworks when
increasing parallelism. Unfortunately this approach introduces
some significant drawbacks in the hardware pipeline. When
multiple replicated streams try to read and write the same
on-chip scratchpad location, these operations are serialized
and performance degrades. To avoid these access conflicts,
Graphicionado divides the Processing phase into two portions,
a source-oriented portion and a destination-oriented portion,
corresponding to stages P1–P3 and stages P4–P9 in Fig. 5.
The two portions are then replicated separately and connected
using a crossbar switch as shown in Fig. 7. Each parallel
stream in the source-oriented portion of the pipeline is
responsible for executing a subset of the source vertices and
each parallel stream in the destination-oriented portion of the
pipeline is responsible for executing a subset of the destination
vertices. The crossbar switch routes edge data by matching the
destination vertex id of the edge. To maximize the throughput
of the switch, standard techniques such as virtual output
queues [47] are implemented.
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Fig. 8: Data layout for the parallel implementation of Graphicionado.

The Source-oriented portion of the pipeline reads pre-
partitioned source VProperty and associated edges from
memory; partitions are done using the source vertex id’s
last log2(n) bits for n streams. Similarly, the destination-
oriented portion of the pipeline reads pre-partitioned destination
VProperty from memory and reads and writes pre-partitioned
destination VTempProperty from the on-chip scratchpad as
shown in Fig. 8. Partitions are done using the destination
vertex id’s last log2(m) bits for m streams.

This parallelization of the source and destination streams
eliminates memory access conflicts as each stream is strictly
limited to only access the memory and scratchpad memory
regions exclusively assigned. Another benefit of this paral-
lelization technique is that it simplifies the on-chip scratchpad
memory design. We implement m instances of dual-ported
eDRAMs for Graphicionado as opposed to using a single large
eDRAM with 2m ports.

B. Edge access parallelization
For this parallelized Graphicionado pipeline, Read Edges

(stage P3) is likely to be one of the performance bottlenecks
because it needs to perform occasional random off-chip memory
accesses. Even for complete edge access algorithms which do
not need random off-chip memory accesses, this stage is still
likely to be the performance bottleneck as it can only process
one edge per cycle, while previous stages Read Source Property
and Read EdgeIDTable can process one vertex per cycle. Real-
world input graphs tend to have a large discrepancy between the
number of vertices and the number of edges with the number
of edges being an order or orders of magnitude larger than the
number of vertices [16]. This makes fetching multiple edges
per cycle necessary in order to maintain high throughput and
balance the pipeline design. Graphicionado replicates the Read
Edges unit and parallelizes edge accesses.

We show the different implementations of parallelizing
edge accesses for active-vertex based algorithms and complete
edge access algorithms in Fig. 9. In the active-vertex based
algorithms implementation, an active vertex id is allocated
to one of the Read Edges units for edge accesses based on
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Fig. 9: Implementations of parallelized edge accesses. A single stream is
shown.

input queue occupancy (lowest occupancy first). Edges loaded
from memory are then arbitrated and passed onto the crossbar
switch. In the complete edge access algorithms implementation,
each source vertex id is broadcasted to all of the Read Edges
units and the units only access edges with assigned destination
vertex id’s as described in Section V-A. The output of each
Read Edges is directly connected to the virtual output queue
of the crossbar switch.

C. Destination vertex access parallelization
While the use of the optional destination vertex property

array is not common (stage P4 in Fig. 5), it becomes a
performance bottleneck when it is present because it involves
random vertex reads. To alleviate such performance degradation,
we implement a parallelization scheme similar to the parallel
edge readers (Fig. 9a) described above. The Read DST
Property module is replicated and each destination vertex id is
allocated to the lowest occupied module to fetch the destination
VProperty. Vertex properties loaded from memory are then
arbitrated to produce a single output per cycle.

VI. SCALABLE ON-CHIP MEMORY USAGE

As outlined in Section IV-A, Graphicionado utilizes the
on-chip memory for two purposes: performing the temporary
destination property update (P7-P9) and reading the edge ID
table (P3). By storing those data in an on-chip scratchpad,
Graphicionado improves the throughput of pipeline stages (P3,
P7, and P9), avoids off-chip memory bandwidth wastes, and
lowers the pipeline stall time by minimizing the latency of
temporary destination vertex property updates. However, in
many cases, the scratchpad memory size is not big enough
to house all required data. This section explores strategies to
effectively utilize the limited on-chip scratchpad memory.

A. Graph slicing
Storing temporary destination vertex property requires

Number of Vertices ⇥ Size of a Vertex Property bytes of on-chip
scratchpad memory. Assuming a 4-byte vertex property size
and a 32MB on-chip scratchpad memory size, graphs with
up to 8 million vertices could be supported. To process larger
graphs without losing the benefit of on-chip memory usage,
Graphicionado slices a graph into several slices and processes
a single slice at a time.

The slicing technique works as follows. First, vertices from
the input graph are divided into N partitions based on their
vertex id’s. An example graph in Fig. 10 has six vertices and
they are partitioned into two partitions: P1 contains vertices
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Fig. 10: Graph slicing Example.
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Fig. 11: Extended graph slicing scheme for symmetric graph optimization.

(1, 2, 3) and P2 contains vertices (4, 5, 6). Then two slices
are constructed depending on which partition the destination
vertices of the edges fall as shown on the right side of Fig. 10.
After the input graph is sliced, Graphicionado processes a slice
of the graph for each sub-iteration, i.e. executing Processing
phase for slice 1, executing Apply phase for slice 1, executing
Processing phase for slice 2, executing Apply phase for slice 2,
and repeating for all iterations. Since the slices are partitioned
using destination vertex id’s, write-write conflicts are avoided
and no edges need to be processed twice. The slicing does
incur some overhead as the same source vertex properties could
be read more than once and therefore increase the total read
bandwidth usage slightly compared to no slicing.

B. Extended graph slicing for symmetric graphs

While the graph slicing is orthogonal to most of the Graphi-
cionado optimizations, it requires extra pipeline extensions
when used together with the symmetric graph optimization
(Section IV-D). With the symmetric graph optimization, a
scratchpad memory needs to house both the vertex property
array for the source as well as the destination vertices. In this
case, the slicing in Fig. 10 is not effective as its on-chip storage
requirement is not reduced. We employ an extended slicing
scheme as shown in Fig. 11.

Given a symmetric graph as the one shown in Fig. 11,
Graphicionado pre-processes the graph and generates a directed
graph which only keeps directed edges originating from a larger
vertex id to a smaller vertex id.

With the generated directed graph, three slices are con-
structed: Slice1 = {(u, v)|u 2 P1, v 2 P1}, Slice2 =

{(u, v)|u 2 P2, v 2 P1}, and Slice3 = {(u, v)|u 2 P2, v 2
P2}. Unlike the original graph slicing scheme which only
focuses on slicing a graph based on dstid’s, this extended
scheme considers both srcid and dstid for slicing. With N
partitions, this extended slicing scheme generates N(N +1)/2
slices.

For Graphicionado to operate with this extended slicing
scheme, an extension to the control is necessary as well. First,
care should be taken in ensuring that all edges associated
with the vertices about to be updated have gone through the
Processing phase before the Apply phase is executed. With the
extended slicing scheme, unlike the base case, Apply does not
happen for every sub-iteration. Instead, it happens selectively
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Fig. 12: Extended slicing scheme control example for four partitions. Each
row represents a sub-iteration and 3rd-6th column shows the set of events
taken after the processing phase of each sub-iteration.

for sub-iterations where a vertex partition is processed for the
last time. In addition, since each sub-iteration does not fully
process all edges associated with a vertex partition, temporary
vertex property data on the scratchpad memory should be stored
to memory and loaded back to the scratchpad memory between
each Processing phase.

Table 12 shows an example control of a four-partition case.
Note that this necessary write-back of scratchpad memory data
is not dynamically decided. Instead, they are determined a-
priori by the number of vertex partitions. Thus, at runtime,
Graphicionado simply needs to follow the pre-determined
control flow.

C. Coarsening edge ID table
Another use of the on-chip scratchpad is to store the

EdgeIDTable which keeps the mapping between vertices and
their corresponding starting edge id’s as shown in Fig. 13-
(a). When the size of the EdgeIDTable is too large to fit, a
coarsened EdgeIDTable is stored as shown in Fig. 13-(b). A
coarsened EdgeIDTable stores an EID for every N vertices
(N = 2 here) instead of storing the EID’s for every vertex. To
find edges corresponding to a given vertex id, the Read Edges
unit starts from index bvid/Nc in the coarsened EdgeIDTable
where vid is the vertex id and N is the coarsening factor.

Edges[] in Memory

(b) Coarsened (2x) EdgeIDTable

Index 1 2 3 4 5 6 7 8 9 10 11
Edge (1,2) (1,4) (2,1) (2,3) (2,5) (3,6) (4,3) (5,1) (5,4) (5,6) *

Index 1 2 3 4 5 6
EID 1 3 6 7 8 11

Index 1 2 3
EID 1 6 8

(a) EdgeIDTable

Fig. 13: EdgeIDTable and coarsened EdgeIDTable.

When using a coarsened EdgeIDTable, extra edge accesses
will incur and care needs to be taken in trading off the on-
chip storage size and the extra edge accesses. Note that the
slicing technique actually reduces the average degree per
vertex and therefore reduces the overhead for coarsening the
EdgeIDTable.

VII. GRAPHICIONADO EVALUATION

A. Evaluation Methodology

Overall Design We implemented each pipeline stage of
Graphicionado in Chisel [6], generated Verilog, and synthesized



the blocks using a proprietary sub-28nm design library to
produce timing, area, and power numbers. We gave the
synthesis tools an operating voltage of 0.7V, a target clock cycle
of 1ns, and requested medium effort for area optimization. The
slowest module has a critical path of 0.94ns including setup
and hold time, putting the Graphicionado design comfortably
at 1GHz.

Evaluation Tools For the performance evaluation, a custom
cycle-accurate simulator was designed. This simulator models
the microarchitecture behavior of each hardware module
described in Section III-B. In addition, the performance model
implements a detailed cycle-accurate scratchpad memory model.
It is also integrated with the open-source DRAM simulator
DRAMSim2 [41] to simulate the cycle-accurate behavior of
the off-chip memory accesses. For the on-chip scratchpad
memory, 32nm eDRAM model of CACTI 6.5 [19] is used
to obtain the cycle time, access latency, and dynamic/static
energy consumption. Table II shows the system parameters of
the evaluated Graphicionado implementation.

Software Framework Evaluation To compare Graphi-
cionado’s performance and energy efficiency with an optimized
software implementation, a software graph processing frame-
work GraphMat [46] is evaluated. We chose GraphMat because
it has been shown to have the best performance amongst
many different software graph processing frameworks and the
performance is better or within 20% of the representative native
software implementation. We measure the Xeon chip power
consumption using National Instrument’s power measurement
data acqusition PCI board [37]. Table II shows the system
parameters of the evaluated system.

Graphicionado Software Framework

Compute Unit 8 ⇥ Graphicionado
Streams @ 1Ghz

16 ⇥ Haswell Xeon Cores @
2.3Ghz

On-chip
memory

8MB per stream
(total 64MB)

eDRAM scratchpad
(2Ghz / 1.5ns latency)

L1I/L1D: 512KB/8-way
L2: 4MB/8-way

LLC: 40MB

Off-chip
memory

4 ⇥ DDR4-2133
17GB/s channel

4 ⇥ DDR4-2133
17GB/s channel

TABLE II: System used for Graphicionado and software graph framework
evaluation.

Graph Datasets Table III describes the graph datasets used for
our evaluation. A mixture of real-world graphs – FR, FB, Wiki,
LJ, TW, NF, and synthetic graphs – RMAT, SB are used for
the evaluation. For synthetic graphs, the Graph500 RMAT data
generator [1] is used to generate the RMAT graph [10] and a
bipartite graph generator described in [43] is used to generate
a SB graph which has similar edge distributions with the real-
world Netflix graph but at a different scale. Amongst these
graphs, FR, FB, Wik, LJ, RMAT, and TW are used to evaluate
PageRank, BFS, and SSSP; bipartite graphs NF and SB are
used to evaluate CF which requires a bipartite input graph. For
the SSSP evaluation on unweighted real-world graphs, random
integer weights between 0 and 256 were assigned.

Graph #Vertices #Edges Brief Explanation

Flickr (FR) [13] 0.82M 9.84M Flickr Crawl Graph

Facebook (FB) [51] 2.93M 41.92M Facebook User Interaction Graph

Wikipedia (Wiki) [13] 3.56M 84.75M Wikipedia Link Graph

LiveJournal (LJ) [13] 4.84M 68.99M LiveJournal Follower Graph

RMAT Scale 23 (RMAT) [1] 8.38M 134.22M Synthetic Graph

Twitter (TW) [28] 61.57M 1468.36M Twitter Follower Graph

Netflix (NF) [7]
480K users,
18K movies 99.07M Netflix Prize Bipartite Graph

Synthetic Bipartite (SB) [43]
997K users,
21K items 248.94M Synthetic Bipartite Graph

TABLE III: Graph datasets used for the evaluation
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B. Graphicionado Results

Overall Performance Fig. 14 shows the normalized Graphi-
cionado speedup with respect to GraphMat performance.
Graphicionado’s on-chip storage is sized at 64MB which is not
large enough for all workloads to store their VTempProperty
arrays and EdgeIDTable. Techniques discussed in Section VI,
namely graph slicing and coarsening of the edge table, are used
for large graphs as stated in the caption. Graphicionado achieves
a 1.7⇥ to 6.5⇥ performance advantage over the software graph
processing framework GraphMat running on a 16-core 32-
thread Xeon server. Graphicionado’s main source of perfor-
mance advantage over the software framework is the efficient
use of the on-chip scratchpad memory. While the software
framework is run on a processor with vast parallelism, the
performance is often limited by inefficient memory bandwidth
usage. On the other hand, Graphicionado avoids wasting off-
chip memory bandwidth by utilizing scratchpad memory and
benefits from extra effective bandwidth.
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Throughput Fig. 15 shows the throughput of the Graphi-
cionado and the software graph processing framework. The
y-axis in the figure represents the average number of edges
processed every nanosecond (or every cycle for the Graphi-
cionado design since it runs at 1GHz). We make the following
observations: PageRank exhibits high and stable throughput
at about 4–4.5 edges per nanoseconds when executing on
Graphicionado . This is because Graphicionado’s PageRank
pipeline does not have any random memory accesses. As long
as all the data is prefetched in time, it can theoretically reach
the peak throughput of processing 8 edges per cycle, at 1
edge per cycle per stream for a total of 8 streams. However,
its throughput is limited by the off-chip memory bandwidth.
For active-vertex based algorithms such as BFS and SSSP,
there are random memory accesses and thus they achieved
lower throughput than PageRank. Amongst all workloads,
Wiki’s throughput is particularly low when executing on
Graphicionado and using GraphMat. This is because Wiki’s
graph structure is narrow and deep and it exhibits a large
number of iterations updating very few vertices each iteration.
CF has very low edge processing throughput because it has a
large vertex property size at 128 bytes; the off-chip memory
bandwidth is further bounded by the vertex property accesses
in addition to the edge accesses.
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Fig. 16: Off-chip communication traffic of Graphicionado and the software
graph processing framework normalized to optimal communication case.

Communication Efficiency Fig. 16 shows the efficiency of
Graphicionado and GraphMat’s off-chip memory accesses. The
efficiency of the off-chip communication is defined as the
ratio of its off-chip memory traffic normalized to the optimal
communication — the amount of off-chip memory accesses in
an imaginary device which has enough on-die storage to reuse
all the data for each iteration but not across iterations. For
PageRank, both Graphicionado and GraphMat exhibit quite a
bit less off-chip communication than other algorithms because
PageRank does not incur off-chip random accesses overhead.
For BFS and SSPS, Graphicionado accesses 2⇥-3⇥ more
off-chip data than the optimal case in most of the graphs
(except Wiki) and GraphMat uses significantly more bandwidth
than Graphicionado. This is because off-chip bandwidth waste
(i.e. reading and writing 64-byte memory when only a small
portion of it is useful) are much more common when executing
in the software framework. Lastly, Graphicionado running
CF consumes roughly 10x more bandwidth than the optimal
case because Graphicionado loads destination vertex properties
at 128 bytes per edge. While the software framework uses

much less off-chip communication for CF, its performance is
heavily limited by other factors (i.e., memory latency, compute
throughput) as shown in Fig. 14.
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Power/Energy Fig. 17 shows the energy consumption of the
Graphicionado normalized to GraphMat running on a Haswell
Xeon server. For this diagram, energy per access and the leakage
power of the eDRAM is obtained using the 32nm eDRAM
model in CACTI 6.5 [19]. Note that the reported number from
CACTI was more conservative than eDRAM power models
shown in other literature [50]. For the Graphicionado pipeline
design, each hardware unit is conservatively assumed to be at its
peak activity. As shown in the diagram, the energy consumption
is about 1-2% of the processor energy consumption. The power
consumption differs by around 20x (⇠150W on a Xeon chip
vs. ⇠7W on Graphicionado), coupled with the 2-5x runtime
difference, resulted in a total of 50x-100x energy difference. In
Fig. 16, most of the energy (⇠90%) is spent on the eDRAM.
The hardware modules themselves are mostly small specialized
routing, control, interface to the memory elements units and
thus it is natural that they do not consume much energy. Note
that Graphicionado’s energy consumption does not include the
DRAM controller energy since it could be placed off-die while
Xeon’s energy consumption includes its integrated memory
controller.

C. Effects of Graphicionado optimizations

Parallelization/Optimization This subsection explores the
impact of parallelization and optimization on the Graphicionado
pipeline. In Fig. 18, the leftmost bar represents the single stream
baseline case. This baseline utilizes the on-chip scratchpad
memory (Section IV-A) and edge access pattern optimization
(Section IV-B) and is denoted as Baseline. From this, the
number of streams are doubled for CFG 1 to CFG 3. Then,
CFG 4 shows the effects of prefetching while CFG 5 shows
the effects of edge and destination vertex property access
parallelization. Finally CFG 6 is only shown for CF and it
shows the effects of applying symmetric graph optimization.
As depicted, parallelizing Graphicionado streams provides near-
linear speedups. Enabling data prefetching achieves another 2⇥
speedup. Applying edge access parallelization for active-vertex
based algorithms provides an additional 1.2⇥ speedup and
the combination of edge access parallelization and destination
vertex property parallelization provides another 2⇥ speedup
on CF. PageRank, however, does not see any extra speedup
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Fig. 19: Effect of graph slicing and edge table coarsening on performance.

from CFG 4 to CFG 5 since it is already bounded by memory
bandwidth at this point. Lastly, symmetric graph optimization
provides another 1.7⇥ extra speedup for CF by essentially
halving the number of edges that need processing.

Graph Slicing and Edge Table Coarsening Figure 19
explores the impact of graph slicing and edge table coarsening
techniques described in Section VI. In Fig. 19, the leftmost
bar represents the case where a scratchpad memory size is
enough to house all required data, denoted as Scaling Factor
= 1. The next few bars represent cases where a scratchpad
memory size is 1/N of the total required size where N is the
scaling factor. For a scaling factor of N, the input graph is
sliced into N slices (or N(N+1)/2 for the extended slicing
scheme), and the EdgeIDTable is coarsened by a factor of N.
In general, reducing the scratchpad memory size to one-eighth
of the required data size results in around a 30% performance
degradation in PageRank, a 35% degradation in BFS, and a
50% degradation in SSSP. Note that even with the 30%–50%
performance degradation, Graphicionado still outperforms the
software graph processing framework running on a server-grade
multiprocessor while consuming less than 2% of the energy.
For BFS-Wiki and CF, slicing provided a distribution of the
graph where some slices contain either no edges to process or
no vertices to update and therefore skip either the Processing or
the Apply phase for multiple iterations causing the performance
to actually be better than the no-slicing case.

In summary, as depicted in Fig. 19, Graphicionado can
support the processing of very large graphs with reasonable
performance degradation. In addition, given the recent trend
of increasing on-chip storage for processors (e.g. Intel’s i7-
5775C [20], IBM’s Power8 [45]), we expect that most of the
real-world graph’s intermediate data will fit in a larger on-chip
eDRAM with a reasonable scaling factor. With a scaling factor
of 16, a 128MB eDRAM can store intermediate data for graphs
having up to 512 million vertices which exceeds the number
of Internet users in Europe (487 Millions in 2015 [22]).

VIII. RELATED WORK

GPU-based Graph Processing Frameworks There are
a few graph analytics software frameworks and libraries
specifically optimized for GPUs; Gunrock [49], MapGraph [14],
nvGraph [39], and Enterprise [32] are representative examples.
Fair comparisons against GPU-based frameworks are difficult
since GPUs often have much larger memory bandwidth than
what we provisioned for Graphicionado (68GB/s). Here we
present a few datapoints for comparison. Recent work [32]
compares the throughput of GPU-based BFS implementations
across different frameworks. When run on a Tesla K40c GPU
(with 288GB/s memory bandwidth) using the Twitter input
graph, Enterprise (a specialized GPU BFS implementation)
is able to traverse 4.5 edges/ns, Gunrock 0.7 edges/ns, and
MapGraph 0.2 edges/ns. Graphicionado processes 1.1 edges/ns
(on BFS-Twitter) with 68GB/s available memory bandwidth.
If we scale these GPU results assuming a bandwidth of only
68GB/s, Enterprise can process 1.06 edges/ns, Gunrock 0.17
edges/ns, and MapGraph 0.047 edges/ns. Note that the TDP
of the Tesla K40c is 245W while Graphicionado only uses
around 7W.
Hardware-based Graph Analytics Acceleration Hardware
acceleration for graph analytics has been recently analyzed with
an emphasis on FPGA-based accelerators. First, there are a few
accelerators designed for a specific graph analytics algorithm
(e.g., SSSP [53], Belief Propagation [24], and PageRank [36]).
They can be very efficient but cannot be utilized for a domain
of applications. Recently, a couple of vertex-programming
model based graph analytics accelerators were explored [12,
38]. While both share the same goal with Graphicionado,
GraphGen [38] focuses on generating an application-specific
accelerator for a given vertex program specification rather than
providing a single re-usable domain-specific accelerator. On
the other hand, FPGP [12] targets a different problem where
edges are stored in a device with extremely limited bandwidth
(e.g., disk). GraphOps [40] is a concurrent work that provides
a set of modular hardware units implemented in FPGA for
graph analytics. GraphOps optimizes for graph storage and



layout to provide efficient use of the off-chip memory while
Graphicionado optimizes for graph access patterns utilizing
an on-chip scratchpad and eliminating unnecessary off-chip
memory accesses for efficiency. Lastly, Tesseract [3] targets the
same domain as our work, but explores different technology
by implementing specific hardware extensions using the logic
layer of a 3D-stacked DRAM.
Software Graph Processing Frameworks In addition to
the popular software graph processing frameworks described
in Section II-A, GraphChi [29], TurboGraph [17], and X-
Stream [42] are also similar frameworks utilizing disk-based
systems for graph processing. Since these frameworks often
focus on optimizing for efficient data locality and access
patterns, they are closely related to Graphicionado; however,
Graphicionado is a hardware implementation that optimizes for
off-chip memory bandwidth consumptions rather than memory-
to-disk bandwidth consumptions.
Domain-specific accelerators Domain specific accelerators
are becoming more popular since application-specific accel-
erators are prone to obsoleteness. Example domain-specific
accelerators in machine learning (PuDianNao [31], Tabla [34])
and databases (Q100 [52], Widx [27]) share the common
principle with Graphicionado in that they identify the key
characteristics and bottlenecks of applications in a specific
domain and try to overcome them with efficient hardware.

IX. CONCLUSION

In this paper, we present a domain-specific accelerator
Graphicionado specialized for graph analytics processing.
Based on the well-defined, popular vertex programming model
used in many software processing frameworks, Graphicionado
allows users to process graph analytics in a high-performance,
energy-efficient manner while retaining the flexibility and ease
of a software graph processing model. The Graphicionado
pipeline is carefully designed to overcome inefficiencies in
existing general purpose processors by 1) utilizing an on-chip
scratchpad memory efficiently, 2) balancing pipeline designs
to achieve higher throughput, and 3) achieving high memory
level parallelism with minimal cost and complexity. Based
on the fact that Graphicionado achieves significantly higher
speedup (1.76�6.54⇥) for the same memory bandwidth while
consuming less than 2% of the energy compared to the state-
of-the-art software graph analytics framework running on a
16-core Haswell Xeon server, we conclude that Graphicionado
could be a viable solution to meet the ever increasing demand
for an efficient graph processing platform.
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