
Graphene: Strong yet Lightweight Row Hammer
Protection

Yeonhong Park
Seoul National University

ilil96@snu.ac.kr

Woosuk Kwon
Seoul National University

kws9603@snu.ac.kr

Jung Ho Ahn
Seoul National University

gajh@snu.ac.kr

Eojin Lee
Seoul National University

ejlee29@scale.snu.ac.kr

Jae W. Lee
Seoul National University

jaewlee@snu.ac.kr

Tae Jun Ham
Seoul National University

taejunham@snu.ac.kr

Abstract—Row Hammer is a serious security threat to modern
computing systems using DRAM as main memory. It causes
charge loss in DRAM cells adjacent to a frequently activated
aggressor row and eventually leads to data bit flips in those cells.
Even with countermeasures from hardware vendors for years,
many latest DDR4 DRAM-based systems are still vulnerable
to Row Hammer. Furthermore, technology scaling continues to
reduce the Row Hammer threshold, hence posing even greater
challenges than before. Although many architectural solutions
for Row Hammer have been proposed in both industry and
academia, they still incur substantial overhead in terms of chip
area, energy, and performance, fail to provide a sufficient level
of protection, or both. Thus, we propose Graphene, a low-cost
Row Hammer prevention technique based on a space-efficient
algorithm that identifies frequent elements from an incoming data
stream. Graphene is provably secure without false negatives and
with tightly bounded false positives. Furthermore, Graphene has
an order of magnitude smaller area overhead compared to a state-
of-the-art counter-based scheme. This makes Graphene a scalable
solution to Row Hammer attacks for the memory systems of today
and the future. Our evaluation shows that Graphene features
nearly zero performance and energy overhead when running
realistic workloads. Even for the most adversarial memory access
patterns, Graphene increases refresh energy only by 0.34%.

I. INTRODUCTION

DRAM has been widely used as the main memory in modern
computer systems. Over decades manufacturers have scaled
down the feature size of DRAM for cost scaling [8], [9], which
naturally poses a threat to its reliability in two aspects [35],
[42]. First, as the size of the cell capacitor decreases, the
noise margin of DRAM cells has tapered off. Second, with a
decrease in distance between neighboring cells, DRAM cells
have become more vulnerable to electromagnetic coupling and
unintended field effect.

As a result, modern DRAM technologies are exposed to
a new problem called Row Hammer [29], [42]. It causes
charge loss in cells of victim rows adjacent to an aggressor
row experiencing a large number of activations (ACTs) within
a refresh window (tREFW). This phenomenon leads to data
corruption if the number of accumulated ACTs reaches a certain
level, called Row Hammer threshold. This can be exploited
by malicious programs to crash a system or gain elevated
access to compromise the entire system on every type of

platforms including personal computers, mobile devices, and
cloud servers [12], [19], [20], [47], [47], [52]–[55].

Naturally, this problem has recently drawn a lot of at-
tention from the community, and many solutions have been
proposed [3], [7], [17], [22], [25], [27], [29], [30], [32], [49]–
[51], [54], [56]. Some of the proposals modify the software
stack for detecting and preventing Row Hammer attacks [3],
[7], [22], [30], [54]. However, these proposals often require
intrusive modifications to the system software stack and incur
significant overhead in terms of performance, preventing their
widespread adoption.

Alternatively, architectural solutions [27], [29], [32], [49]–
[51], [56] have also been proposed. Most proposals identify
potential victim rows and refresh them proactively before their
refresh window has lapsed. This class of techniques can further
be divided into two sub-classes: probabilistic [29], [51], [56],
and counter-based schemes [27], [32], [49], [50]. For example,
PARA [29] is perhaps the best known probabilistic scheme,
which refreshes adjacent rows with a small probability (e.g.,
0.001) at every ACT. However, its low hardware complexity
comes with a substantial cost of additional refreshes to ensure
a sufficient level of protection. Other recent probabilistic ap-
proaches [51], [56] are vulnerable to adversarial access patterns.

In contrast, counter-based protection schemes deterministi-
cally refresh the victim rows when the number of ACTs to
an aggressor row reaches a certain threshold by maintaining
a set of hardware counters. Thus, a potential victim row is
always refreshed before the number of accumulated ACTs hits
the Row Hammer threshold. This approach provides protection
guarantees at the expense of hardware structures for tracking
ACT counts. The primary challenge for these schemes is to con-
struct a tracking mechanism with both high precision and low
cost. However, state-of-the-art counter-based solutions still fall
short of successfully addressing this challenge [32], [49], [50].

Despite these numerous proposals, a recent report [16]
uncovers that even latest DDR4 DRAM-based systems are still
vulnerable to Row Hammer attacks. Furthermore, DDR4 cells
turn out to have a much lower Row Hammer threshold (50K)
than DDR3 cells (139K) [29] due to technology scaling. This
poses even greater challenges to prevent Row Hammer attacks

for future DRAM devices. Thus, clarion calls have been issued
to the research community to come up with more scalable
solutions for strong Row Hammer protection.

In this paper, we propose Graphene1, a novel counter-based
Row Hammer prevention mechanism that provides guaranteed
protection at a low cost. The key innovation of Graphene is that
it leverages the Misra-Gries algorithm [41], a classic, space-
efficient solution to identify a set of frequently accessed ele-
ments from an incoming data stream. We apply this algorithm
to track precisely all DRAM rows that have been activated more
times than a certain threshold. Thus, Graphene is a solution that
provides protection guarantees with no false negative, while
requiring only a minor extension to the DRAM protocol. Com-
pared to the existing counter-based schemes, Graphene achieves
both area efficiency and low performance/energy overhead at
the same time. Specifically, Graphene has either a much smaller
performance/energy overhead at a competitive area cost [49],
[50], or an order of magnitude smaller area overhead at a
similar performance/energy cost [32]. This makes Graphene to
be a practical solution even for future DRAM systems which
are expected to be more susceptible to Row Hammer attacks
due to a reduced Row Hammer threshold and a higher chance
of disturbing even non-adjacent rows. In summary, Graphene
meets all of the following, often conflicting, design goals:

• Guaranteed protection - Graphene guarantees to refresh
victim rows before the number of accumulated ACTs on
their aggressor rows hits the Row Hammer threshold (no
false negatives).

• Low energy and performance overhead - With the currently
reported Row Hammer threshold (50K) [16], Graphene
does not generate any additional refresh for realistic work-
loads. Even for the most adversarial pattern, the number
of additional Row Hammer refreshes is very small.

• Low area overhead - Graphene has about 15× fewer table
bits than a state-of-the-art counter-based scheme [32].

• Scalability - Graphene scales gracefully to both a reduced
Row Hammer threshold and an increased coverage of non-
adjacent victim rows to provide effective Row Hammer
protection for the memory system of today and the future.

II. BACKGROUND AND MOTIVATION

A. DRAM Refresh

Standard Parameters. The electric charge in a DRAM cell
slowly leaks off due to various static leakage sources. As a
result, the data in the DRAM cell has limited retention time.
Thus, every cell’s charge must be recovered at least once within
a retention time, and this recovery mechanism is called refresh.
The memory controller (MC) makes DRAM restore its data
by issuing a refresh command periodically, and the rows to
refresh at each command are determined by the DRAM device
itself [5]. The DDR4 standard [23] specifies 7.8 µs of refresh
interval (tREFI), and at every tREFI, a refresh command time

1Graphene is an atomic-scale hexagonal lattice made of carbon atoms, which
is very thin yet extremely strong.

Term Definition Value
tREFI Refresh interval 7.8 µs
tRFC Refresh command time 350 ns
tRC ACT to ACT interval 45 ns

TABLE I
DEFINITION AND TYPICAL VALUES OF REFRESH PARAMETERS IN DDR4

JEDEC STANDARD [23]

(tRFC) is given to DRAM to refresh multiple rows. Table I
summarizes the parameter values used in this paper.
Refresh Window. Each DRAM row has a regular refresh rou-
tine, and the constant time window between the two refreshes
of the same row is defined as tREFW. To not lose its data a
DRAM cell must have a longer retention time than tREFW.
This parameter was a part of the JEDEC standards in the past.
However, the cell retention time is dependent upon technology
and design, thus this parameter is removed from the standard;
today’s DRAM has a vendor-specific value of tREFW. In this
paper, we assume tREFW is 64 ms by default.

B. Row Hammer

Phenomenon. Row Hammer is a phenomenon that frequently
activating a certain DRAM row causes a bit flip in its nearby
rows. Rows being frequently activated are called aggressor
rows, and the nearby rows affected by those ACTs are victim
rows. The mechanism of Row Hammer is explained by Park
et al. [45]. They find that activating and then precharging
a particular wordline makes the electrons constituting the
underneath current channel flow into the nearby cells. This
results in recombination of their cell charges with the electrons
from the current channel, and by repeating this process, those
nearby cells may lose enough charges to cause bit flips. The
exact number of ACTs on aggressor rows that results in bit flips
of their victim rows varies across cells. Usually, the minimum
number of ACTs causing a bit flip for any row within the chip
is conservatively chosen to be the Row Hammer threshold.
Row Hammer Attacks to Non-adjacent Victim Rows. Most
studies on Row Hammer have so far confined the range of
victim rows only to rows immediately adjacent to an aggressor
row (i.e., row address of ±1 from the aggressor row). The
experimental study [28], [29], however, reports that Row
Hammer can also affect non-adjacent rows of the aggressor
rows (e.g., row address of ±2 and ±3 from the aggressor row).
Throughout this paper, we refer to Row Hammer attacks that
affect victims up to n rows from the aggressor row as non-
adjacent (±n) Row Hammer.
Security Threats. It is known that even a very simple user-level
program [18] can mount Row Hammer attacks. An attacker pro-
gram can flip data in a victim program by frequently activating
an aggressor row if its adjacent rows are allocated to the victim
program. For example, a recent work introduces a systematic
methodology to easily examine a system’s vulnerability to
Row Hammer [11]. Exploiting this phenomenon, malicious
software programs may crash the system, gain elevated access,
and eventually take over the whole system [20], [47], [53],
[55]. Modern computer systems are built on memory isolation

between processes, and Row Hammer seriously undermines this
foundation. Such a Row Hammer-induced system breakdown
is shown to be feasible on various types of computer platforms
including personal computers [19], [52], servers [11], [12],
[47], and mobile phones [54].
Row Hammer to State-of-the-Art DRAM Devices. After the
public disclosure of Row Hammer attacks on DDR3 DRAM
devices [29], hardware vendors have proposed techniques to
protect the system from this vulnerability at different levels.
For example, BIOS/UEFI vendors have introduced a patch that
increases DRAM refresh rate [2], [33]. However, this method
does not provide protection guarantees and incurs high energy
and performance overhead even when there is no Row Hammer
attack. Protection mechanisms at the memory controller (MC)
exploiting Target Row Refresh (TRR) are also proposed [36],
but they have limited protection capabilities and/or product
coverage [16]. DRAM vendors have also implemented the
Row Hammer protection mechanism in their chips [13], [39].
However, a recent report [16] reveals that even the latest DDR4
DIMMs are still susceptible to Row Hammer under specific
memory access patterns. Furthermore, technology scaling con-
tinues to reduce the Row Hammer threshold from around 139K
for DDR3 to a few tens of thousands for DDR4 (e.g., 50K,
20K [28]). Thus, Row Hammer is still a serious problem in
today’s mainstream DRAM device and will become more so
in the future.

C. Limitations of Existing Solutions

Many architectural solutions have emerged to counter Row
Hammer attacks. These solutions can be divided into two major
categories: probabilistic and counter-based schemes.
Probabilistic Schemes. PARA [29] is a simple probabilistic
scheme that performs refreshes for the adjacent rows of every
activated row with a certain probability. PRoHIT [51] and
MRLoc [56] extend PARA by maintaining history tables to
track victim row candidates. PRoHIT manages two history
tables: hot, cold. MRLoc’s history table is a simple queue,
which tracks the access pattern by taking victim rows of an
incoming stream of ACTs.

These probabilistic schemes have an advantage in hardware
cost for their simplicity. However, they do not provide guaran-
teed protection and hence are prone to false negatives (failures
in detecting a real Row Hammer attack), which prevents its
widespread adoption [31]. It may be able to provide a higher
level of protection by increasing the probability of issuing
victim row refresh, but this comes with a performance and
energy cost. To provide a sufficient level of protection for
a large number of DIMMs, the probability for victim row
refresh should be increased substantially from the default
setting in the original paper [29]. Furthermore, PRoHIT and
MRLoc are vulnerable to specific patterns exploiting their table
management algorithms. These vulnerabilities may degrade the
security of these techniques to be comparable to (or worse
than) PARA with no table. We analyze the security of these
schemes in greater details in Section V-A.

Counter-based Schemes. Counter-based protection schemes
maintain an array of counters to identify the heavily activated
memory rows, which can potentially cause Row Hammer. Since
having a counter for every row is not a scalable solution, the
main challenge is to reduce the number of counters for tracking
ACTs. CRA [27] caches counters only for frequently activated
rows on chip and puts the rest in DRAM. Unfortunately, this
scheme performs poorly for an access pattern with little locality.

CBT [49], [50] reduces the number of counters by letting
a single counter to track ACTs for a set of rows. CBT starts
with one counter that tracks ACTs for all DRAM rows in a
bank together, and when its count reaches the pre-defined split
threshold, the counter is broken down into two child counters,
each covering a half of the rows covered by its parent counter.
CBT repeats this process until all the counters are consumed.
Different split thresholds are defined for each level of the tree.
Whenever there is a counter whose count reaches the last level
threshold which is derived from the Row Hammer threshold,
CBT refreshes all the victim rows of the rows managed by
the counter. Although space-efficient, CBT has a problem
of generating a burst of refreshes which can result in the
performance degradation. Moreover, CBT assumes that the
rows covered by the same counter are physically contiguous.
With this assumption, CBT refreshes N

2l
+2 rows (N is the total

number of rows in a bank and l is the level of the counter) when
any counter value reaches the last level threshold. However,
this assumption may not hold if the DRAM internally remaps
the addresses. CBT then would have to refresh N

2l
× 2 rows,

not N
2l

+ 2, to guarantee all victim rows associated with this
counter are protected.

Unlike CBT, TWiCe [32] counts the number of ACTs much
more precisely for DRAM rows and provides guaranteed
protection with a small number of false positives. It leverages
the fact that the maximum frequency of ACTs is bounded
within a refresh window (tREFW) by DRAM timing parameters
to reduce the total number of counters. However, TWiCe still
has a relatively large area overhead for the counter table. It
requires few tens of thousands of entries to protect the recent
DDR4 DRAM chips with 50K Row Hammer threshold.

These counter-based schemes provide strong protection
against Row Hammer attacks with no false negatives but incur
a significant cost in terms of either energy and performance
(CBT) or area (TWiCe). Furthermore, technology scaling con-
tinues to increase this cost, which may have been acceptable for
old-generation DRAM devices like DDR3 with a sufficiently
high Row Hammer threshold (e.g., 139K [29]). As a result, it
is no longer practical for today’s and future DRAM devices
having much lower Row Hammer threshold values. Therefore,
we need a solution that provides strong protection guarantees
at a low cost.

III. GRAPHENE: A LIGHTWEIGHT ROW
HAMMER PROTECTION MECHANISM

This section presents Graphene, a strong yet lightweight Row
Hammer protection mechanism for modern DRAM systems.
Section III-A illustrates how Graphene utilizes the Misra-Gries

algorithm [41] for tracking potential Row Hammer aggressors.
Section III-B discusses how Graphene achieves complete Row
Hammer protection by extending the Misra-Gries algorithm.
Then Section III-C presents a proof of protection guarantees
of the proposed mechanism. Finally, Section III-D explains
how Graphene can be extended to handle non-adjacent Row
Hammer.

A. Row Hammer Aggressor Tracking

Overview. Graphene detects a potential Row Hammer attack
by utilizing the Misra-Gries algorithm [41], which is one of the
classic solutions to the frequent elements problem. Frequent
elements problem is a task of identifying elements that make up
more than a certain fraction of a finite data stream. We observe
that detecting potential Row Hammer attacks is similar to the
frequent elements problem in that Row Hammer is an event
that occurs when more than a certain number of ACTs happen
on the nearby rows of a specific row within the refresh window.
Misra-Gries Algorithm. The Misra-Gries algorithm maintains
a finite-sized associative array data structure which has an item
ID as the key and the estimated count as the corresponding
value. We refer to this structure as counter table. Note that we
differentiate the estimated count in each entry of the counter
table from the actual count of the corresponding item ID. In
addition to the counter table, it also maintains a value named
spillover count, which is initialized with zero.

Item	ID

Yes

Already
in	the	table?

(hit)

Yes

Any	entry	with	the
same	value	as	the
spillover	count?

No

Increment	the
estimated	count	

by	one

Insert	new	item	ID
in	that	entry

Increment	the
spillover	count

No

Fig. 1. Flowchart for the Misra-Gries Algorithm

Figure 1 illustrates the flow of the Misra-Gries algorithm.
Whenever an item enters the stream, it checks if the counter
table already has an entry associated with the same item ID. If
so, it simply increments the estimated count of the matching
entry by one. If it misses, it first checks whether there is an
entry whose value is equal to the spillover count. If it exists, this
entry’s key is replaced by the current item ID, and its estimated
count is incremented by one. Here, note that the estimated
count value is not reset to zero even if the replacement of the
key happens. If there is no entry whose value is equal to the
spillover count, the spillover count value is incremented by
one without table update.
Application to Aggressor Tracking. In the context of Row
Hammer, a stream contains a sequence of activated memory
row addresses. Then, the counter table entry’s key is the row
address, and the value is the estimated number of ACTs for
that particular row. Figure 2 exemplifies the case where we
apply the Misra-Gries algorithm to Graphene for potential Row
Hammer aggressor tracking. It shows the counter table having
three entries processing three incoming ACTs whose addresses
are 0x1010, 0x4040, and 0x5050. Initially, the table is occupied

with three entries for address 0x1010, 0x2020, and 0x3030,
and the spillover count is 2. In Step 1, row address 0x1010
is activated. Since it is already in the table, the estimated
count of the matching entry is incremented by one (i.e., 6). In
Step 2, row address 0x4040 is activated for which there is no
matching entry. As there is no entry whose estimated count
equals to the spillover count, the spillover count is incremented
by one (i.e., 3). Finally, in Step 3, row address 0x5050 is
activated, which again misses in the table. But this time, an
entry whose estimated count is equal to the spillover count (i.e.,
row address 0x3030) exists, so Graphene replaces its address
with the incoming row address 0x5050 and increments the
corresponding estimated count by one. Note that the estimated
count of the entry is 4 (not 1) as the old count is carried over
to the newly inserted address.
Tracking Guarantees. The Misra-Gries algorithm guarantees
that any item that occurs more than a W/(Nentry+1) fraction
in the stream appears in the counter table. Here, Nentry is the
number of entries in the counter table, and W is the number of
items in the stream. In a Row Hammer context, this guarantees
that all row addresses that have been activated more than
W/(Nentry + 1) times during the last W ACTs are in the
count table. In other words, in order to track items which were
activated more than T times during the last W ACTs, Nentry

needs to be sized to satisfy the following inequality:

Nentry >
W

T
− 1 (1)

B. Row Hammer Prevention

Section III-A presents the algorithm that can be used to
track rows that are activated more than T times over the last
W accesses. However, this itself does not directly lead to Row
Hammer prevention. In this section, we present how Graphene
identifies potential victim rows exploiting such property of the
algorithm and thwarts Row Hammer attacks without missing.
Graphene Row Hammer Prevention. Graphene Row Ham-
mer prevention scheme maintains a counter table with Nentry

and a spillover counter for each DRAM bank. Every time an
ACT happens for that particular bank, it updates the counter
table and spillover counter as in Figure 2. Here, we set Nentry

so as to guarantee any row that has been activated more than
T times is tracked by the counter table following Inequality 1.
At this point, when an estimated count for an entry whose
key is row X reaches specific threshold T or a multiple of
T (e.g., 2T, 3T, ...), we identify row X as a potentially fatal
aggressor row that can trigger Row Hammer attacks. In this
case, row X’s adjacent rows (X+1 and X-1) are refreshed. We
refer to these refreshes as victim row refreshes. By doing so,
Graphene prevents any row from being activated more than T
times without generating victim row refreshes in the meantime.
The proof for this property is shown in Section III-C. Finally,
for every reset window tREFW, the counter table as well as
its spillover count register are reset, and the same process
is repeated from the beginning. Our proposition is that this
scheme can provide guaranteed Row Hammer prevention if
we properly configure Nentry and T .

Row Address Count

0x1010 5

0x2020 7

0x3030 3 0x1010

Row Address Count

0x1010 6

0x2020 7

0x3030 3 0x4040

Row Address Count

0x1010 6

0x2020 7

0x3030 3 0x5050

Row Address Count

0x1010 6

0x2020 7

0x5050 4

Spillover Count 2 Spillover Count 2 Spillover Count 3 Spillover Count 3

Fig. 2. Example operations of the aggressor tracking algorithm

time
𝑡1

table reset
𝑡2

table reset
𝑡𝑥

normal refresh of
a victim row of row X

𝑡𝑥 + tREFW
normal refresh of

a victim row of row X

up to 2(𝑇-1) ACTs accumulated
without detection before normal refresh

𝑇-1 ACTs𝑇-1 ACTs

Fig. 3. Timing diagram of table reset and normal refresh of a victim of an
arbitrary row X . Note that at most 2(T − 1) ACTs can be accumulated for
row X during the period between two consecutive normal refreshes of its
victim row (tx, tx+tREFW).

Configuring T . Considering that Row Hammer happens when
the adjacent (aggressor) row of a victim row is activated for
more than TRH times, it is natural that T is a function of TRH .
However, naïvely setting T to Row Hammer threshold TRH is
not the right solution. In fact, T should be much smaller than
TRH for two reasons.

First, Graphene tracks an aggressor row, not a victim row.
In this case, two adjacent (aggressor) rows can concurrently
disturb a single victim row [29] from both sides in the worst
case, and thus we should presume that even only TRH/2
accesses on a single aggressor row may cause the bit-flip.

Second, we should account for the fact that we do not know
the exact time of the refresh for a particular row. Instead,
we only know that, at any point in time, a specific row has
been refreshed within the last tREFW interval (i.e., 64ms).
Considering that the reset window of our scheme is also set to
tREFW, this indicates that a particular row is last refreshed in
the current window or the last window. Here, one important
characteristic of Graphene Row Hammer prevention scheme
is that the maximum number of ACTs that one aggressor row
can experience without incurring a victim refresh is T -1 within
a single reset window (see Section III-C). Then, the maximum
number of ACTs on any adjacent row that a single victim row
can experience without being victim-refreshed over the two
reset windows is limited to 2(T -1). Figure 3 shows this case.

Combining the points that i) a single aggressor can cause
a bit-flip in its adjacent row with TRH/2 ACTs when being
concurrently hammered with the other aggressor, and ii) a
single victim row can experience up to 2(T -1) ACTs from its
adjacent row before it is refreshed again, choosing T satisfying
the following inequality is sufficient to guarantee Row Hammer
prevention. A recent study [16] reports that Row Hammer
threshold (TRH) is around 50K on the latest DDR4 DRAM
devices. In other words, an aggressor row needs to receive 50K
ACTs without being refreshed to cause bit-flips in its victim
rows. In this case, T is 12.5k.

Term Definition Value
TRH Row Hammer threshold 50K
W Max number of ACTs in a reset window 1,360K∗

T Threshold for aggressor tracking 12.5K∗
Nentry Number of table entries 108∗

TABLE II
PARAMETERS FOR GRAPHENE WITH ONLY ±1 ROW HAMMER ASSUMED

(∗BASELINE NUMBERS TO BE FURTHER ADJUSTED FOR OPTIMIZED
IMPLEMENTATION IN SECTION IV)

2(T − 1) <
TRH

2
⇒ T <

TRH

4
+ 1 (2)

Configuring Nentry. Inequality 1 specifies the condition to
choose the correct Nentry. Since we already derived T , the
only issue is to find out W , which is the number of ACTs
within the window. Considering that our reset window is tREFW,
we can conservatively calculate the maximum number of ACTs
that fits within this reset window and set it to be W . Based
on the DRAM timing parameters in Table I, we obtain the
maximum number of ACTs within this window by computing
W = tREFW(1−tRFC/tREFI)/tRC = 1360K. Here, tREFW(1−
tRFC/tREFI) represents the time that a bank is available for
serving memory requests (i.e., not blocked for refresh) within
tREFW reset window, and tRC represents the minimum interval
between two ACT commands to the same bank. Now that W
is set, it is trivial to find that the minimum number of Nentry

that satisfies Inequality 1 is 108. Table II shows the parameters
for Graphene that we derived so far.

C. Proof of Protection Guarantees

As explained in Section III-B, Graphene issues victim row
refreshes whenever the estimated count of an entry reaches
a multiple of T . We now demonstrate that Graphene can
successfully thwart all possible Row Hammer attacks in this
way by proving the following theorem.

Theorem. The actual count of any row cannot increase by T
without triggering a victim row refresh.

Actual count refers to the actual number of ACTs for a row
within the reset window. To prove this theorem, we introduce
the following two lemmas.

Lemma 1. The estimated count of every entry in the counter
table is always equal to or greater than the actual count of
the corresponding DRAM row.

Lemma 2. Spillover count cannot exceed W
Nentry+1 .

Proof of Lemma 1. We employ a strong induction to prove
it. The base step (the lemma is true after the first ACT from

the table reset) is trivial. The inductive step is to show, if the
lemma has been true at every moment in the past, it is true now.
The only case that can make it false is i) when an incoming
row X takes the slot of an entry whose count is equal to the
spillover count, and ii) its new estimated count is smaller than
the actual count of row X . However, this is impossible. Row X
had been in the table but was once replaced. At its last eviction,
its estimated count must have been equal to the spillover count
at that moment (old spillover count), and its actual count must
have been smaller or equal to it by the assumption of strong
induction. As spillover count monotonically increases over
time, the inserted entry’s new estimated count (spillover count
+ 1) is greater than the old spillover count. Therefore row X’s
current actual count, which is old spillover count + 1 at most,
cannot be greater than its new estimated count.
Proof of Lemma 2. The sum of spillover count and all the
estimated counts is equal to the number of ACTs accrued since
the last table reset. This is because either the spillover count
or a single estimated count increments by one at every ACT.
As the spillover count cannot be greater than any of estimated
counts, it has its maximum value when it and all the estimated
counts are the same. Thus, spillover count cannot be greater
than W

Nentry+1 .
Proof of Theorem. Suppose a moment when a row X’s actual
count turns from T − 1 to T . By Lemma 1, its estimated
count is equal to or greater than its actual count. If equal,
victim row refreshes for row X would be performed at this
moment. If greater, victim row refreshes would have been
already performed in the past when its estimated count turned
T .

Not many change even when row X’s actual count goes
as high as multiples of T . Assume that row X is activated
more than 2× T . The first pair of victim refreshes for row X
must have been performed when its estimated count touched
T . From that moment, row X would never be evicted from the
table as it is always greater than the spillover count (Lemma
2). Thus, when row X is activated exactly T times after its
first victim row refreshes, the second victim row refreshes for
row X occur. At that moment, its actual count is always equal
to or smaller than 2×T . This can be generalized to when row
X is activated n× T times.

D. Graphene for Non-adjacent Victim Rows

Thus far, we have focused on the scenario where a single
aggressor row can only affect two adjacent rows. However, as
discussed in Section II-B, it is also possible for an aggressor
row to affect other rows that are not directly adjacent to
it. Here, we introduce how Graphene can be extended to
protect non-adjacent rows from Row Hammer. We make simple
modifications on two parts of the Graphene’s operation: 1) the
number of victim rows to be refreshed at once when a potential
Row Hammer attack is detected, and 2) the value of T .

For the non-adjacent (±n) Row Hammer, which assumes
that an ACT to a particular row affects up to n rows away,
Graphene performs victim row refreshes up to ±n rows at
once an entry in the table hits a multiple of T . Moreover,

Section III-B configured T based on the assumption that a
single victim row can be disturbed by two (±1) adjacent rows.
However, for the non-adjacent Row Hammer, up to 2n rows
can concurrently disturb a single victim row, and thus T needs
to be smaller. For example, if we assume that all potential (non-
)adjacent aggressor rows incur the same amount of disturbance
on the victim row’s charge, Inequality 2 should use TRH/2n
as the right-hand-side term instead of TRH/2.

However, non-adjacent aggressors may not have the same
impact on the victim as its adjacent aggressors. For example,
prior works mention that geometric distance undermines the
impact of wordline crosstalk [28], [29], [45]. In such a case,
we can define coefficients µi in a way that makes µi · Tcharge

TRH

represents the degree of charge disturbance from aggressor rows,
which are i rows away from the victim row, whereas adjacent
aggressors make a charge disturbance of Tcharge

TRH
. Tcharge is the

amount of the charge disturbance that needs to be accumulated
to materialize the bit flip. Note that µi is smaller than 1 for
all i and decreases with i. With this notation, Inequality 2 is
revised as follows.

T <
TRH

4(1 + µ2 + ...+ µn)
+ 1

This modification makes Nentry to increase by a factor of
(1 + µ2 + ... + µn) and T to decrease by the same factor.
For example, if we assume that the amount of disturbed
charges from an aggressor row that is n rows away is inversely
proportional to the square of their distance (i.e., µi =

1
i2), this

factor is limited to 1.64 (
∑∞

1
1
k2 ≈ 1.64). This means that the

table size increase in this case is limited to 1.64×, which is
manageable. On the other hand, the number of victim refreshes
that needs to be performed when the table hits T increases by
n, the maximum distance that an ACT on an aggressor row
can affect to. Still, one thing to note is that the chance for
a counter value reaching T itself is negligible when running
realistic workloads (shown in Section V-B).

IV. ARCHITECTING GRAPHENE

A. Victim Row Refresh

Augmenting DRAM Interface. Graphene is deployed inside
a memory controller (MC) like several other proposals [27],
[29], [49], [50]. Unfortunately, the current DRAM protocol
lacks support for an MC to issue a refresh to a specific row at a
specific time. Thus, our deployment scenario requires a minor
extension to the existing DRAM interface. Specifically, we
assume that the MC can issue a Nearby Row Refresh (NRR)
command, which is similar to the Target Row Refresh (TRR)
command in DDR3. Whenever a DRAM device receives this
command, it refreshes the nearby rows that are potentially
affected by the specified (aggressor) row.
Victim Row Refresh Overhead. Whenever an entry in the
counter table’s estimated count becomes a multiple of T , a
NRR command on that particular row is issued by the MC.
Then, up to 2n rows are refreshed where n is the distance
of the farthest row that an ACT on a single row can affect
(Section III-D). During this victim row refreshes, the bank

Control
Logic

Spillover Count Register

Address CAM

Count CAM

…
…

Overflow Bit

GrapheneACT

ADDR (𝑙𝑜𝑔2𝑟𝑜𝑤_𝑛𝑢𝑚 bits)

COUNT (𝑙𝑜𝑔2𝑇 bits)

𝑁𝑒𝑛𝑡𝑟𝑦

𝑁𝑒𝑛𝑡𝑟𝑦

Spillover Count

Memory Controller

NRR
alert signal

Fig. 4. Hardware Structure of Graphene

1 def process_activation(activated_addr):
2 /* Table Update */
3 if(i ← ROW_ADDR_CAM.SEARCH(activated_addr))
4 // Row Address HIT
5 incremented_cnt ← COUNT_CAM.READ(i) + 1
6 COUNT_CAM.WRITE(i, incremented_cnt)
7 else
8 // Row Address MISS
9 if(i ← COUNT_CAM.SEARCH(SPCNT))
10 // Entry Replace
11 incremented_cnt ← SPCNT + 1
12 ROW_ADDR_CAM.WRITE(i, activated_addr)
13 COUNT_CAM.WRITE(i, incremented_cnt)
14 else
15 // No Replacement
16 SPCNT++

Fig. 5. Pseudo-code for table and spillover count register update using CAM.

remains busy for victim refreshes, which incurs performance
and energy overhead. In practice, however, this is not a critical
problem as the event of a counter entry hitting T is extremely
rare unless the system is under a deliberate Row Hammer
attack. Detailed discussions of the performance and energy
overhead of Graphene are available in Section V-B.

B. Table Implementation

Table Management Using CAM. Figure 4 shows a structure
of Graphene with the table implemented by two CAM arrays:
one for row addresses (Address CAM) and the other for
counters (Count CAM). We use CAM as it simplifies the
design. The overhead of the CAM-based tables, together with
the surrounding logic, is evaluated in Section V.

Figure 5 presents a pseudo-code of the table and spillover
count register updates performed upon the arrival of every ACT.
A check for address hit and the existence of an entry whose
count value is equal to the spillover count can be performed
by a single CAM search. The critical path of a table update
is fired when an address miss occurs, and an entry with the
same value as the spillover count exists, so entry replacement
happens. Since address CAM and count CAM can be written
at the same time (Line 12 and 13 in Figure 5), the critical path

is composed of three sequential CAM operations (two searches
and one write).
Reducing Table Bit-width. The bit-width of each entry in
Address CAM is determined by the number of rows in a bank
(row_num). It requires dlog2 row_nume bits per entry. For
example, a bank with 64K rows requires 16 bits per entry for
address. On the other hand, each estimated count of Count
CAM is required to count up to W , the maximum number of
ACTs in a reset window (1,360K). 21 bits are necessary per
entry of Count CAM by default. Fortunately, the introduction of
an overflow bit for each estimated count can reduce the required
bit-width from 21 bits to 14 bits as it grows up to T (not
W). When the estimated count reaches T , the corresponding
overflow bit is set high, and the estimated count is reset to zero.
Then the overflow bit remains high until the end of the current
reset window and the estimated count is repeatedly reset to zero
every time it reaches T . This is possible due to the fact that
in Graphene’s table, the address of an entry whose estimated
count reaches T is never evicted until the end of the current
reset window. By tagging a counter entry with an overflow bit,
instead of counting up to W , we can effectively reduce the bit-
width without compromising the protection capabilities. Other
counters whose overflow bit is not set should still retain the
precise number of estimated count for identifying the minimum
entry. As a result, only 15 bits (14 bits + 1 overflow bit) are
sufficient for count, and we save 6 bits for each entry. This
saving becomes more pronounced as T decreases.

C. Adjustable Reset Window

In Section III-B, we assumed that the reset window is fixed
to tREFW. In fact, it is still possible to guarantee the Row
Hammer prevention even with a shorter reset window, as long
as T and Nentry are carefully configured. This section explores
the impact of changing the reset window size to tREFW/k.
Re-Configuring T . Recall that Section III-B configured T
using an inequality 2(T −1) < TRH/2. For this inequality, we
leveraged the fact that i) the last normal refresh happens on the
current or the last reset window, and ii) the maximum number
of ACTs on a single row without refresh is T − 1. If the reset
window is tREFW/k, the last normal refresh happens on the
current or one of the last k windows. As a result, Inequality 2
changes to the following.

(k + 1)(T − 1) <
TRH

2
⇒ T <

TRH

2(k + 1)
+ 1 (3)

Re-Configuring Nentry. In Section III-B, we computed the
maximum number of ACTs that can fit in a single reset window
of tREFW (W) to be about 1360K. Now that the reset window
is reduced by a factor of k, the maximum number of ACTs
that fits in a single window is also scaled down by the same
factor. Plugging this modified W = 1360K/k into Inequality 1
and combining it with Inequality 3 (conservatively assuming
T = TRH

2(k+1)) results in the following:

Nentry >
2× 1360K

TRH
· k + 1

k
− 1

0

20

40

60

80

100

120

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

1 2 3 4 5 6 7 8 9 10

of

 ta
bl

e
en

tr
ie

s

R
el

at
iv

e

of
 a

dd
iti

on
al

 r
ef

re
sh

es

k (reset window = tREFW / k)

Additional Refreshes Table Size

Fig. 6. Relative number of additional refreshes in the worst case to the number
of normal refreshes over a refresh window (tREFW, 64 ms) and the number of
table entries with varying k for a single bank.

Here, increasing k results in a smaller number of table entries
(Nentry). However, as k increases, the term k+1

k converges to
1 and the amount of reduction in Nentry becomes smaller. On
the other hand, increasing k also decreases T , which can lead
to a potential increase in the number of additional refreshes
depending on the access pattern. Assuming the worst-case
access pattern, Figure 6 shows the change in the number of
additional refreshes as well as change in table size across
varying k. As shown in the figure, the table size quickly
saturates as the k increases, while the number of additional
refreshes keeps increasing. We conservatively choose k = 2
for evaluation. In this case, Nentry becomes 81. However, one
can also use larger k (e.g., 5) for greater area savings at the
expense of slightly more additional refreshes.

V. EVALUATION

This section evaluates Graphene by comparing it against the
prior art. Section V-A analyzes the protection capability of the
three probabilistic schemes. Section V-B evaluates the overhead
of Graphene in terms of area, energy, and performance, in
comparison to other counter-based schemes and PARA, a
representative probabilistic protection scheme. Section V-C
presents a scalability study with reduced TRH as the technology
scales. Finally, Section V-D discusses how Graphene’s overhead
changes if non-adjacent victim rows are also protected and
compares it with the other schemes.

A. Security Analysis

While counter-based schemes (CBT [49], [50], TWiCe [32],
and Graphene) provide guaranteed protection against Row
Hammer attacks, probabilistic schemes (PARA [29], PRoHIT
[51], and MRLoc [56]) do not provide such guarantees. For
this reason, it is difficult to make a fair comparison between
the probabilistic schemes and the counter-based schemes. In
this section, we carefully examine the worst-case security guar-
antees of existing schemes and derive their configurations that
can provide a near-complete protection on a single-processor
system with four memory channels, where each one has a
single-rank DDR4 DIMM. We assume that the system achieves
near-complete protection when the system has a less than 1%
chance of a successful Row Hammer attack under the most
adversarial access pattern over one year.

(a) {x− 4, x− 2, x− 2, x, x, x, x+2, x+2, x+4}∗

(b) {x1, x2, ..., x7, x8}∗

Fig. 7. Vulnerable access patterns for (a) PRoHIT (7 entries) and (b) MRLoc
(15 entries)

PARA [29]. PARA performs a victim row refresh with a certain,
pre-defined probability. Due to its characteristics, the worst-
case scenario is where a single address is repeatedly activated
for the whole refresh window (e.g., 64 ms). Assuming this
access pattern and a probability of p, the chance of an event
eN where a series of N ACTs has at least TRH serial accesses
without triggering a victim row refresh (i.e., a Row Hammer
attack is successful) is given as follows2.

P (eN) = P (eN−1) + p(1− 1

2
p)TRH (1− P (eN−TRH−1))

With the equation above, it is possible to compute the chance
of a successful Row Hammer attack on a single bank protected
with PARA over a single refresh interval (e.g., 64 ms). Using
this number, it is also possible to compute the chance of a
successful Row Hammer attack on the system with 64 memory
banks (i.e., 4 memory ranks) within a year. Given a Row
Hammer threshold of 50K, p needs to be at least 0.00145 to
achieve the near-complete protection. We evaluate the overhead
of PARA-0.00145 in Section V-B.
PRoHIT [51] and MRLoc [56]. PRoHIT and MRLoc are
particularly vulnerable to specific adversarial patterns, and this
is a critical security concern. Figure 7(a) is an example pattern
that PRoHIT is particularly vulnerable to. In PRoHIT, the more
frequently accessed rows are more likely to be chosen for victim
row refreshes. With the provided pattern in Figure 7(a), row
x− 5 and x+ 5 are hammered repeatedly but less frequently
than the other victim rows (row x− 3, x− 1, x+ 1, x+ 3).
Thus, these two rows have a relatively lower chance of being
refreshed despite being frequently accessed. We simulated PRo-
HIT protection scheme with the provided adversarial pattern
and identified that PRoHIT fails to guarantee the near-complete
protection when it is configured to incur the same number of
extra refreshes with the PARA-0.00145. Specifically, under this
configuration, PRoHIT has the 0.25% chance of exhibiting the
bit-flip within tREFW. Such a high probability of bit-flip within
tREFW implies nearly 100% chance of protection failure within
a year. For MRLoc, a simple access pattern that repeatedly
accesses eight distinct, non-adjacent addresses in order (as
in Figure 7(b)) can simply nullify the impact of the MRLoc
history queue with 15 entries. In such a case, there are 16
potential victims and thus MRLoc with the 15-entries history
queue fails to efficiently track them. In this case, MRLoc has
the same protection capability as PARA assuming the same p

2It is trivial that P (eN) = 0 when N < TRH . The first term in the
equation indicates a chance that the protection failure occurs within preceding
N−1 ACTs. The second term refers to a chance that the first protection failure
occurs exactly at N th ACT. It is only possible when the row is lastly refreshed
at (N − TRH)th ACT and has not been refreshed afterward. This happens
with the probability of 1

2
p(1− 1

2
p)TRH for each of the two victim rows. Plus,

victim rows must have survived without a successful Row Hammer attack by
the first N − TRH − 1 ACTs, thus 1− P (eN−TRH−1) is multiplied.

Core Configurations (16 cores)
Core 3.6 GHz 4-way OOO cores

Private Cache 16KB L1 I/D cache, 128KB L2 cache
Shared Cache 16 MB L3 cache

Memory System Configurations
Module DDR4-2400

Configuration 4 channels; 1 rank per channel
Capacity 128GB

Bandwidth 76.8 GB/s
Scheduling PAR-BS [44]
Page-Policy Minimalist-open [26]
tRFC, tRC 350 ns, 45 ns

tRCD, tRP, tCL 13.3 ns
TABLE III

ARCHITECTURAL PARAMETERS FOR SIMULATION

is used. However, in other patterns, MRLoc incurs more Row
Hammer refreshes than PARA since it refreshes rows being
tracked by the history queue with higher probability than p.
Therefore, in what follows, we use PARA as a representative
probabilistic scheme for comparison.

B. Overhead Evaluation

Methodology. We model the area and energy overhead of
Graphene’s extra hardware by implementing RTL design and
synthesizing it using Synopsys Design Compiler with TSMC
40nm standard cell library. For performance evaluation of
Graphene and other schemes we perform cycle-level simulation
of a 16-core processor system using McSimA+ [1]. From this
simulation we report the number of victim row refreshes and
their impact on the system performance. We carefully model
all schemes in the memory controller to determine when a
victim row refresh should be applied on every ACT command.
When a victim row refresh is issued, its overhead (i.e., tRC
× the number of victim rows to refresh) is accounted for in
DRAM cycles in addition to tRP at the precharge of the bank
in question. For the performance metric, we use the weighted
speedup [14] and report the amount of speedup reduction due
to these additional victim row refreshes (lower is better). The
simulation parameters are summarized in Table III. Note that
Graphene does not affect the DRAM timing since its operation
latency is completely hidden within tRC.
Workloads. We use both multi-programmed and multi-threaded
workloads for evaluation. The choice of benchmarks mostly
follows TWiCe [32], a state-of-the-art counter-based scheme.
For multi-programmed workloads, we extract the most represen-
tative 100M instructions from each of the 29 SPEC CPU2006
benchmarks [21]. We then execute the nine most memory-
intensive applications (SPEC-high), each with 16 copies. SPEC-
high includes mcf, milc, leslie3d, soplex, GemsFDTD, libquan-
tum, lbm, sphinx3, and omnetpp. We also render two mixed
workloads, one composed with 16 applications among SPEC-
high (mix-high) and the other randomly comprised of 16 appli-
cations among all SPEC CPU2006 applications (mix-blend). In
addition to these multi-programmed workloads, we evaluate five
multi-threaded benchmarks (MICA [34], PageRank from GAP
benchmark suite [4], RADIX and FFT from SPLASH-2 [46],

Canneal from PARSEC [6]) as well. Finally, we also create and
run synthetic benchmarks (S1, S2, S3, S4) to mimic possible
adversarial attack patterns. S1 repeats arbitrarily selected N
rows (N = 10, 20), whereas S2 occasionally has random rows
in between the repeating rows. S3 is a straightforward Row
Hammer attack scenario where only one row is repeatedly
accessed, and S4 is a mixture of S3 and random row accesses.

Compared Designs. Graphene’s overhead is compared with the
three prior works: PARA [29], CBT [49], [50], and TWiCe [32].
PARA is configured as discussed in Section V-A. CBT can be
configured in many ways by adjusting its number of counters.
Using a large number of counters reduces the number of false
positives while utilizing a small number of counters reduces
its area overhead. Here, we evaluate CBT-128 (CBT with 128
counters) as its table size is comparable to that of Graphene
(discussed in Section V-B1). The table configuration of TWiCe
is determined by the Row Hammer threshold like Graphene.

Table size
(bits/bank) Memory type

CBT-128 (10 levels) 3,824 SRAM
TWiCe 20,484 + 15,932 CAM + SRAM

Graphene 2,511 CAM
TABLE IV

COMPARING SIZE AND MEMORY TYPE OF TABLES OF ROW HAMMER
MITIGATION TECHNIQUES

Graphene DRAM
Dynamic Energy per ACT ACT + PRE

3.69× 10−3 nJ 11.49 nJ [40]
Static Energy (tREFW) REFs/bank (tREFW)

4.03× 103 nJ 1.08× 106 nJ [40]
TABLE V

GRAPHENE ENERGY CONSUMPTION

1) Graphene Hardware Module:
Area Cost. The total number of entries for Graphene’s man-
agement table per each bank is 81. Each entry contains row
address and estimated count. Representing 64K row addresses
requires 16 bits, and 14 bits are needed to count up to T (8,333).
Altogether with an overflow bit, each entry is comprised of
31 bits. Overall, 2,511 bits are required to build a table for
each DRAM bank. According to our synthesis results using
TSMC 40nm technology, Graphene needs 0.1456 mm2/rank
(16 banks). Note that our estimate is conservative as the
overhead can be further reduced by using a more advanced
process technology and a state-of-the-art CAM design [24].
The space efficiency of Graphene stands out clearly when
compared with other counter-based techniques as in Table IV.
CBT-128 has 3,824 bits per bank. CBT is designed with SRAM
which is usually more area-efficient than CAM on which
our implementation is based. However, the area gap between
SRAM and CAM is not that significant enough to far surpass
the difference in the bit count. For example, a state-of-the-art
CAM design [24] reports only 7% additional area overhead

SPEC-
high

 mix-
high

 mix-
blend

 Canneal FFT MICA Page
 Rank

 RADIX
0
1
2
3
4
5

Re
fre

sh
 e

ne
rg

y
ov

er
he

ad
 (%

) 6.29 7.56

(a) Energy overhead for normal workloads

S1
(N=10)

 S1
(N=20)

 S2
(N=10)

 S2
(N=20)

 S3 S4
0
1
2
3
4
5

Re
fre

sh
 e

ne
rg

y
ov

er
he

ad
 (%

) 15.17 14.06 72.41 67.61 14.89 77.08

(b) Energy overhead for adversarial attack patterns

SPEC-
high

 mix-
high

 mix-
blend

 Canneal FFT MICA Page
 Rank

 RADIX
0
1
2
3
4
5
6

W
ei

gh
te

d
sp

ee
du

p
re

du
ct

io
n

(%
)

(c) Performance overhead

PARA CBT-128 TWiCe Graphene

Fig. 8. The increase of refresh energy on (a) normal workloads as well as (b)
adversarial attack patterns and (c) the end-to-end performance loss by victim
row refreshes. Graphene and TWiCe do not generate any victim row refresh
on all the normal workloads so are excluded from (a) and (c).

over SRAM of the same size. Meanwhile, TWiCe needs a
large CAM array of 20,484 bits along with a SRAM array of
15,932 bits per bank. The area overhead of TWiCe is an order
of magnitude higher than that of Graphene.

Energy Cost Characterization. According to our synthesis
results, the extra hardware structure of Graphene consumes a
negligible amount of energy compared to background DRAM
operations. The energy consumption of Graphene and DRAM
are compared in Table V. Both dynamic energy required to
update the table for every ACT is 3.69×10−3nJ , 0.032% of the
energy consumed for a single pair of ACT and PRE. Also, the
static energy of our tables is 2.11× 103 nJ for tREFW, 0.373%
of energy spent for normal refreshes over the same period.

2) Victim Row Refresh Overhead:
Energy Overhead. Figure 8(a) and (b) show the increase of
refresh energy, which is proportional to the number of victim
row refreshes, respectively for normal workloads and adversar-
ial attack patterns. Normal workloads (multi-programmed and
multi-threaded) do not contain access patterns that may cause
Row Hammer, so all the victim row refreshes for these are
false positives. Like TWiCe, Graphene yields zero victim row
refreshes for these workloads, thus does not incur additional
energy overhead. PARA and CBT-128 increase refresh energy
by up to 0.64% and 7.6%, respectively. For adversarial attack
patterns, Graphene generates more victim row refreshes than
TWiCe, but still remains negligible. The increase of refresh en-
ergy is 0.34% at most. Meanwhile, PARA consumes 2.1% more
refresh energy constantly (even when there is no Row Hammer
attack). CBT-128 makes a burst of victim row refreshes, which

results in a substantial increase in refresh energy. Like TWiCe,
Graphene induces a much smaller number of false positives
under adversarial patterns, thus has a very limited impact on
energy consumption. Note that the Graphene’s table size is
much smaller than TWiCe while incurring a similar degree of
energy overhead.
Performance Overhead. The victim row refreshes may also
cause performance overhead as each of them blocks the bank
access for tRC. Graphene, as with TWiCe, does not incur any
victim row refresh under normal workloads, which implies that
they may not generate any performance degradation unless
deliberate Row Hammer attacks are taking place. By contrast,
PARA and CBT-128 cause performance degradation as high
as 0.52% and 5.1% as shown in Figure 8(c).

C. Scalability Analysis

The Row Hammer threshold has sharply decreased from
DDR3 chips to DDR4 chips [16], [28]. This trend is highly
likely to continue considering that both the amount of cell
charge and the distance between adjacent cells rapidly decrease
with technology scaling. In fact, a very recent experimental
study reports few DDR4 and LPDDR4 chips having the Row
Hammer threshold of around 20K [28]. Thus, we conduct
a comparative study on the scalability of the Row Hammer
protection schemes by analyzing the overhead of each Row
Hammer protection scheme for the cases where the Row
Hammer threshold is reduced by a factor of 2, 4, 8, 16, and 32
(50K, 25K, 12.5K, 6.25K, 3.125K, and 1.56K). To provide the
same level of near-complete protection, the refresh probability
(p) of PARA is configured to the new Row Hammer thresholds:
0.00295 (25K), 0.00602 (12.5K), 0.01224 (6.25K), 0.02485
(3.125K), 0.05034 (1.56K). For CBT, we double the number
of counters and increase its levels by one every time the Row
Hammer threshold is halved; in other words, we used CBT-
256 (11 levels), CBT-512 (12 levels), CBT-1024 (13 levels),
CBT-2048 (14 levels), and CBT-4096 (15 levels). The table
structures of Graphene and TWiCe are adjusted accordingly to
each of the reduced Row Hammer thresholds.
Area Overhead. Figure 9(a) shows the required table size (in
bits) per rank (16 banks) of each counter-based scheme across
different Row Hammer thresholds. Note that TWiCe keeps both
SRAM and CAM arrays, whereas CBT and Graphene need
either SRAM or CAM structure. The table size of all three
counter-based schemes scales up linearly as the Row Hammer
threshold gets reduced. However, since TWiCe already has a
very high area overhead even for the 50K Row Hammer, its
area overhead quickly becomes impractical as the Row Hammer
threshold decreases. For example, it requires a 1.19MB table
(i.e., 0.79MB CAM and 0.40MB SRAM) per rank when the
Row Hammer threshold is 1.56K. For a processor with four
memory channels, each connected to a single-rank DIMM, the
total memory space for the table structure amounts to 4.76MB
(i.e., 3.16MB CAM and 1.60MB SRAM) just for Row Hammer
protection. In the same setting, CBT requires 1.12MB SRAM,
and Graphene requires 0.53MB CAM, which is an order of
magnitude smaller than TWiCe. One thing to note is that the

50K 25K 12.5K 6.25K 3.125K 1.5K
0

240

480

720

960

1200

Ta
bl

e
siz

e
(K

B)

(a) Area overhead
50K 25K 12.5K 6.25K 3.125K 1.5K

0

4

8

12

16

20

Re
f.

en
er

gy
 o

ve
rh

ea
d

(%
)

(b) Energy overhead for
normal workloads

50K 25K 12.5K 6.25K 3.125K 1.5K
0

15

30

45

60

75

Re
f.

en
er

gy
 o

ve
rh

ea
d

(%
)

(c) Energy overhead for
adversarial attack patterns

50K 25K 12.5K 6.25K 3.125K 1.5K
0.0

0.5

1.0

1.5

2.0

2.5

W
ei

gh
te

d
sp

ee
du

p
re

dc
ut

io
n

(%
)

(d) Performance overhead

CBT PARA Graphene TWiCe

Fig. 9. (a) Table size per rank (16 banks), Average refresh energy overhead on (b) normal workloads and (c) adversarial patterns, and (d) Average performance
overhead on normal workloads across varying Row Hammer thresholds.

technology scaling makes the same die area to house a larger
on-chip memory. Therefore, the actual area consumption of
Graphene may not increase as much as the number of bits
required for the table.
Energy Overhead. Figure 9(b) and (c) show that all schemes’
refresh energy overheads increase as Row Hammer threshold
decreases. PARA’s energy overhead linearly increases as the
Row Hammer threshold decreases. Similarly, the energy over-
heads of both Graphene and TWiCe also scale linearly with the
decreasing Row Hammer thresholds on the adversarial attack
patterns (see Figure 9(c)). However, they exhibit a sub-linear
energy increase for normal workloads since the number of
refreshes of these two schemes are highly dependent on the
access pattern. Finally, CBT shows a sub-linear increase in
refresh energy overhead across all workloads. This is because
we double the number of CBT counters as Row Hammer
threshold is halved. A positive side effect of the increased
number of counters is that a single counter manages a smaller
number of rows. This side effect effectively reduces the number
of additional refreshes happening when each counter hits its
threshold. Overall, the figure indicates that both Graphene and
TWiCe will maintain the low refresh energy overhead on normal
workloads even at the extremely low Row Hammer threshold.
By contrast, PARA’s refresh energy overhead becomes more
substantial, and CBT’s refresh energy overhead remains notable
regardless of the Row Hammer thresholds. The similar is
observed in the adversarial attack pattern cases.
Performance Overhead. Figure 9(d) shows the performance
overhead of all four schemes. Since this is highly correlated
with the number of victim row refreshes, which is directly
proportional to the refresh energy overhead, the graph is not
very different from Figure 9(b) except for the case of CBT. The
performance overhead of CBT decreases as the Row Hammer
threshold decreases. Specifically, this is because the number
of counters for CBT scheme increases as the Row Hammer
threshold decreases. As stated in the above paragraph, the
increased number of counters leads to the reduced number of
rows per counter, which corresponds to the number of rows
refreshed at once. Such a reduction makes CBT generate victim
refreshes in a less bursty manner, and eventually lessens its
impact on end-to-end performance.
Summary. We believe both PARA and Graphene are viable
solutions for future DRAM devices having a lower Row
Hammer threshold. However, it is worth noting that Graphene

provides the completely guaranteed protection at the expense
of an extra table size, whose actual area cost may not increase
much as the technology scales.

D. Impact of Non-adjacent Row Hammer

Non-adjacent Row Hammer has not received much attention
in the existing proposals. In fact, only a small fraction of rows
are reported to be susceptible to non-adjacent Row Hammer
in DDR3 systems [29]. However, in the DRAM devices of
today and the future, the importance of protecting non-adjacent
victim rows from Row Hammer attacks will continue to grow.
Counter-based Schemes. CBT [49], [50] and TWiCe [32] do
not address non-adjacent (±n) Row Hammer in their works.
However, we can extend both to protect non-adjacent victim
rows in a way similar to Graphene in Section III-D. Graphene
and TWiCe need to increase the table size by the factor (1+µ2+
...+ µn), and the number of additional refreshes increases by
n, where n is the distance of the farthest row that an aggressor
row can incur a bit-flip (and hence needs to be protected).
However, such an increase in the number of additional refreshes
is not significant as both schemes incur a very small number
of extra refreshes. On the other hand, in the case of CBT, the
increase in additional refreshes makes it impractical, especially
considering that the area overhead of Graphene is comparable
to that of CBT while incurring much fewer extra refreshes.
PARA [29]. PARA can be extended to support non-adjacent
(±n) Row Hammer by utilizing n refresh probabilities
(p1, p2, ..., pn), where px refers to the chance of issuing re-
fresh for rows that are x rows away from an activated row.
Assuming that each parameter to make PARA provides near-
complete protection defined in Section V-A, the number of
additional refreshes of PARA increases roughly by a factor of
(1 + µ2 + ...+ µn) as well. PARA handles non-adjacent Row
Hammer by bearing more energy and performance cost. We
can reiterate the same takeaway about the trade-offs between
Graphene and PARA as discussed at the end of Section V-C.

VI. RELATED WORK

Row Hammer Attacks on Real Systems. It has been shown
that Row Hammer can be exploited to mount various real-
system attacks. In 2015 Google Project Zero [48] demonstrated
that user-level program in a typical PC environment could be the
source of a security breach when combined with Row Hammer
vulnerability. Since then, attacks on mobile devices [53], [54]

and servers [12], [20], [47] have succeeded in breaking the
authentication process and damaging the entire system. As such,
Row Hammer has emerged as a real threat to system security as
it undermines the fundamental principle of memory isolation.
Alternative Solutions to Row Hammer. There are more
options to alleviate or prevent the Row Hammer phenomenon.
After public disclosure of the Row Hammer phenomenon [29],
major system manufacturers provided security patches to in-
crease the refresh rate in the memory controller (e.g., [2], [15],
[33]). This solution can be a temporary fix for existing systems
but has a limitation that the refresh rate cannot be raised high
enough to eliminate all threats due to a significant increase in
energy consumption [5].

Meanwhile, software-based countermeasures are also pro-
posed. These include monitoring victim rows through hardware
performance counters [3], managing page table and memory
allocation [7], [54], analyzing codes to identify Row Hammer
risks before execution [22] and separating integrity-check level
of odd and even rows [30]. Unfortunately, none of them have
been popularized as they involve considerable modifications
to system software and may incur significant performance
overhead [43].
Frequent Elements Problem and Solutions. The frequent
elements problem has been well investigated in the research
community over decades. In adddition to the Misra-Gries
algorithm [41], Lossy counting [37], Count-Min sketch [10]
and Space Saving [38] are popular ones being used in vari-
ous setups. These algorithms demonstrate different trade-offs
between accuracy, coverage and required space. Graphene is
based on Misra-Gries [41] to track potential aggressors as it is
area-efficient and hardware implementation-friendly.

VII. CONCLUSION

We propose Graphene, a low-cost Row Hammer protec-
tion scheme that provides guaranteed protection. Graphene
keeps track of heavily activated rows with a small number of
counters and conducts additional refreshes to potential victim
rows before Row Hammer attacks materialize. We prove the
protection guarantees of Graphene (i.e., no false negatives).
Our evaluation demonstrates that Graphene’s area overhead
is an order of magnitude smaller than TWiCe [32], a state-
of-the-art counter-based scheme. Furthermore, its energy and
performance overhead is nearly zero unless deliberate Row
Hammer attacks are happening. Even for the adversarial attack
patterns, the increase in refresh energy of Graphene is bounded
by about 0.34%. Due to its small area overhead and the tightly
bounded number of victim row refreshes, Graphene is a scalable
solution for Row Hammer protection, which works well for a
reduced Row Hammer threshold and an increased coverage of
non-adjacent victim rows in the future.

ACKNOWLEDGMENTS

This work was supported by a research grant from Samsung
Electronics (Memory Business), the National Research Foun-
dation of Korea (NRF) grant funded by the Korea Government
(MSIT) (NRF-2020R1A2C3010663), IITP grant funded by the

Korea Government (MSIT) (2020-0-01300, Development of AI-
specific Parallel High-speed Memory Interface). The EDA tool
was supported by the IC Design Education Center (IDEC). The
authors thank Hoon Shin for his valuable feedback on an early
version of this work. Jae W. Lee is the corresponding author.

REFERENCES

[1] J. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+: A manycore simu-
lator with application-level+ simulation and detailed microarchitecture
modeling,” in IEEE International Symposium on Performance Analysis
of Systems and Software, 2013.

[2] Apple Inc., “About the security content of Mac EFI Security Update
2015-001,” https://support.apple.com/en-us/HT204934, 2015.

[3] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin, “ANVIL: Software-Based Protection Against Next-Generation
Rowhammer Attacks,” in Proceedings of the 21st International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2016.

[4] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP Benchmark
Suite,” ArXiv, 2015.

[5] I. Bhati, M. Chang, Z. Chishti, S. Lu, and B. Jacob, “DRAM Refresh
Mechanisms, Penalties, and Trade-Offs,” IEEE Transactions on Comput-
ers, 2016.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[7] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “CAn’T
Touch This: Software-only Mitigation Against Rowhammer Attacks
Targeting Kernel Memory,” in 26th USENIX Conference on Security
Symposium, 2017.

[8] K. Chang, O. Mutlu, A. G. Yaglikçi, S. Ghose, A. Agrawal, N. Chatterjee,
A. Kashyap, D. Lee, M. O’Connor, and H. Hassan, “Understanding
Reduced-Voltage Operation in Modern DRAM Devices: Experimental
Characterization, Analysis, and Mechanisms,” ACM SIGMETRICS Per-
formance Evaluation Review, 2017.

[9] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee,
T. Li, G. Pekhimenko, S. Khan, and O. Mutlu, “Understanding Latency
Variation in Modern DRAM Chips: Experimental Characterization, Anal-
ysis, and Optimization,” in Proceedings of the 2016 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Science, 2016.

[10] M. Charikar, K. Chen, and M. Farach-Colton, “Finding Frequent Items
in Data Streams,” in Proceedings of the 29th International Colloquium
on Automata, Languages and Programming, 2002.

[11] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and O. Mutlu,
“Are we susceptible to rowhammer? an end-to-end methodology for cloud
providers,” in IEEE Symposium on Security and Privacy (S&P), 2020.

[12] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting
codes: On the effectiveness of ecc memory against rowhammer attacks,”
in IEEE Symposium on Security and Privacy (S&P), 2019.

[13] S. Electronics, “Green Memory Solution,” 2014.
[14] S. Eyerman and L. Eeckhout, “System-level performance metrics for

multiprogram workloads,” IEEE Micro, 2008.
[15] T. Fridley and O. Santos, “Mitigations Available for the DRAM Row Ham-

mer Vulnerability,” https://blogs.cisco.com/security/mitigations-available-
for-the-dram-row-hammer-vulnerability, 2015.

[16] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida,
H. Bos, and K. Razavi, “Trrespass: Exploiting the many sides of target
row refresh,” in S&P, May 2020.

[17] H. Gomez, A. Amaya, and E. Roa, “Dram row-hammer attack reduction
using dummy cells,” in IEEE Nordic Circuits and Systems Conference,
ser. NORCAS, 2016.

[18] “Test DRAM for Bit Flips Caused by the RowHammer Problem,”
https://github.com/google/rowhammer-test, Google, 2015.

[19] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” S&P, 2017.

[20] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in javascript,” in Detection of Intrusions
and Malware, and Vulnerability Assessment, 2016.

[21] J. L. Henning, “SPEC CPU2006 Memory Footprint,” SIGARCH Comput.
Archit. News, 2007.

[22] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Preventing Mi-
croarchitectural Attacks Before Distribution,” in Proceedings of the 8th
ACM Conference on Data and Application Security and Privacy, 2018.

[23] JEDEC, “DDR4 SDRAM standard JESD79-4B,” 2017.
[24] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm Config-

urable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell
Enabling Logic-in-Memory,” IEEE Journal of Solid-State Circuits, 2016.

[25] I. Kang, E. Lee, and J. Ahn, “CAT-TWO: Counter-Based Adaptive Tree,
Time Window Optimized for DRAM Row-Hammer Prevention,” IEEE
Access, vol. 8, pp. 17 366–17 377, 2020.

[26] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page: A
DRAM page-mode scheduling policy for the many-core era,” in 44th
Annual IEEE/ACM International Symposium on Microarchitecture, 2011.

[27] D. Kim, P. J. Nair, and M. K. Qureshi, “Architectural Support for
Mitigating Row Hammering in DRAM Memories,” IEEE Computer
Architecture Letters, 2015.

[28] J. Kim, M. Patel, A. G. Yaglikçi, H. Hassan, R. Azizi, L. Orosa, and
O. Mutlu, “Revisiting rowhammer: An experimental analysis of modern
dram devices and mitigation techniques,” in Proceedings of the 47th
Annual International Symposium on Computer Architecture, 2020.

[29] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,
and O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” in Proceeding of the
41st Annual International Symposium on Computer Architecuture, 2014.

[30] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida,
and K. Razavi, “ZebRAM: Comprehensive and Compatible Software
Protection Against Rowhammer Attacks,” in 13th USENIX Symposium
on Operating Systems Design and Implementation, 2018.

[31] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed: Reading
bits in memory without accessing them,” in S&P, 2020.

[32] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. Ahn, “TWiCe: Preventing
Row-hammering by Exploiting Time Window Counters,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019.

[33] Lenovo, “Row Hammer Privilege Escalation,”
https://support.lenovo.com/kr/ko/product_security/row_hammer, 2015.

[34] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A Holistic
Approach to Fast In-memory Key-value Storage,” in 11th USENIX
Conference on Networked Systems Design and Implementation, 2014.

[35] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental
Study of Data Retention Behavior in Modern DRAM Devices: Implica-
tions for Retention Time Profiling Mechanisms,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, 2013.

[36] M. Karzmarski, “Thoughts on Intel Xeon E5-2600 v2 Product Family
Performance Optimisation – component selection guidelines,” 2014.

[37] G. S. Manku and R. Motwani, “Approximate Frequency Counts over
Data Streams,” in Proceedings of the 28th International Conference on
Very Large Data Bases, 2002.

[38] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient Computation of
Frequent and Top-k Elements in Data Streams,” in Proceedings of the
10th International Conference on Database Theory, 2005.

[47] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in USENIX
Conference on Security Symposium, 2016.

[39] Micron, “DDR4 SDRAM Datasheet,” 2016.
[40] ——, “DDR4 SDRAM System-Power Calculator,” 2016.
[41] J. Misra and D. Gries, “Finding repeated elements,” Science of Computer

Programming, vol. 2, no. 2, 1982.
[42] O. Mutlu, “The RowHammer problem and other issues we may face

as memory becomes denser,” in Design, Automation Test in Europe
Conference Exhibition, 2017.

[43] O. Mutlu and J. S. Kim, “RowHammer: A Retrospective,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 2019.

[44] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing Both Performance and Fairness of Shared DRAM Systems,”
in Proceedings of the 35th Annual International Symposium on Computer
Architecture, 2008.

[45] K. Park, C. Lim, D. Yun, and S. Baeg, “Experiments and root cause
analysis for active-precharge hammering fault in ddr3 sdram under 3x
nm technology,” Microelectronics Reliability, 2016.

[46] PARSEC Group, “A Memo on Exploration of SPLASH-2 Input Sets,”
in Princeton University, 2011.

[48] M. Seaborn and T. Dullien, “Exploiting the
DRAM Rowhammer Bug to Gain Kernel Privileges,”
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html, 2015.

[49] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-Based Tree
Structure for Row Hammering Mitigation in DRAM,” IEEE Computer
Architecture Letters, 2017.

[50] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating Wordline
Crosstalk Using Adaptive Trees of Counters,” in Proceedings of the 45th
Annual International Symposium on Computer Architecture, 2018.

[51] M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM Stronger Against
Row Hammering,” in Proceedings of the 54th Annual Design Automation
Conference, 2017.

[52] A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating software
mitigations against rowhammer: A surgical precision hammer,” in 21st
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2018.

[53] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
2016.

[54] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. Pillai, G. Vigna,
C. Kruegel, H. Bos, and K. Razavi, “GuardiON: Practical mitigation
of dma-based rowhammer attacks on ARM,” in 15th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2018.

[55] K. S. Yim, “The rowhammer attack injection methodology,” in IEEE
35th Symposium on Reliable Distributed Systems, 2016.

[56] J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-hammering Based on
Memory Locality,” in Proceedings of the 56th Annual Design Automation
Conference, 2019.

