
Genesis: A Hardware Acceleration Framework for
Genomic Data Analysis

Tae Jun Ham∗ David Bruns-Smith† Brendan Sweeney† Yejin Lee∗ Seong Hoon Seo∗

U Gyeong Song∗ Young H. Oh‡ Krste Asanovic† Jae W. Lee∗ Lisa Wu Wills§

∗Seoul National Univerity †University of California, Berkeley ‡Sungkyunkwan University §Duke University

{taejunham, yejinlee, andyseo247, thddnrud, jaewlee}@snu.ac.kr

{bruns-smith, brs, krste}@berkeley.edu younghwan@skku.edu lisa@cs.duke.edu

Abstract—In this paper, we describe our vision to accelerate
algorithms in the domain of genomic data analysis by proposing
a framework called Genesis (genome analysis) that contains an in-
terface and an implementation of a system that processes genomic
data efficiently. This framework can be deployed in the cloud and
exploit the FPGAs-as-a-service paradigm to provide cost-efficient
secondary DNA analysis. We propose conceptualizing genomic
reads and associated read attributes as a very large relational
database and using extended SQL as a domain-specific language
to construct queries that form various data manipulation opera-
tions. To accelerate such queries, we design a Genesis hardware
library which consists of primitive hardware modules that can
be composed to construct a dataflow architecture specialized for
those queries.

As a proof of concept for the Genesis framework, we present
the architecture and the hardware implementation of several
genomic analysis stages in the secondary analysis pipeline cor-
responding to the best known software analysis toolkit, GATK4
workflow proposed by the Broad Institute. We walk through the
construction of genomic data analysis operations using a sequence
of SQL-style queries and show how Genesis hardware library
modules can be utilized to construct the hardware pipelines
designed to accelerate such queries. We exploit parallelism and
data reuse by utilizing a dataflow architecture along with the
use of on-chip scratchpads as well as non-blocking APIs to
manage the accelerators, allowing concurrent execution of the
accelerator and the host. Our accelerated system deployed on
the cloud FPGA performs up to 19.3× better than GATK4
running on a commodity multi-core Xeon server and obtains
up to 15× better cost savings. We believe that if a software
algorithm can be mapped onto a hardware library to utilize the
underlying accelerator(s) using an already-standardized software
interface such as SQL, while allowing the efficient mapping
of such interface to primitive hardware modules as we have
demonstrated here, it will expedite the acceleration of domain-
specific algorithms and allow the easy adaptation of algorithm
changes.

Index Terms—genome sequencing, genomic data analysis, hard-
ware accelerator, FPGA, SQL

I. INTRODUCTION

As the democratization of wet lab sequencing technology
drives down sequencing cost, the cost and runtime of data
analysis are becoming more significant [40]. The Human
Genome Project [33] released the first human genome assembly
in 2001, following 15 years of work at a total cost of $3B. As

Sep.
2001

Oct.
2004

Oct.
2006

Oct.
2008

Oct.
2010

Oct.
2012

Oct.
2014

Feb.
2017

Feb.
2019

$100

$1K

$10K

$100K

$1M

$10M

$100M
Cost of Genome

Fig. 1. The cost of sequencing a human genome has dropped by a hundred
thousand fold, from 2001 to 2019. This data is replicated from the National
Human Genome Research Institute’s survey of genome sequencing costs [42].

depicted in Figure 1, the price of sequencing a single human
genome has decreased from more than $100, 000, 000 in 2001
to about $1000 in 2019, far outpacing Moore’s Law [42]. Just in
July 2019, Veritas Genetics announced a further price reduction
of whole-genome sequencing to below $600 and predicts that
the cost will drop to between $100 and $200 in the next two
years [4]. This cost reduction has motivated investments in
precision and genomic medicine, where the knowledge of an
individual’s genome is used to guide the prevention and the
treatment of diseases [56], and has enabled genomic research
projects that have collected data across tens of thousands of
individuals [34], [65].

An article published in PLoS Biology quantitatively claimed
that genomics is projected to produce over 250 exabytes of
sequence data per year by 2025, far surpassing the current major
generators of big data such as YouTube (∼1-2 exabytes/year)
and Twitter (∼1.36 petabytes/year) [54]. With the aforemen-
tioned big data generation comes challenges in genomic data
acquisition, storage, distribution, and analysis. We focus our
effort on addressing the efficient analysis of genomic data,
in particular, identifying genomic variants in each individual
genome, as it is one of the most computationally complex and
demanding pipelines.

Genomic data processing algorithms are composed of a
mixture of specific algorithms as well as generic data manip-
ulation operations. For example, the most popular genome
sequencing workflow, Broad Institute’s [7] Genome Analysis

ToolKit 4 (GATK4) Best Practices [11], consists of stages
implementing specific algorithms such as read alignment
and variant calling as well as stages performing generic
data manipulations such as mark duplicates and base quality
score recalibration. Thus far, most prior work focused on the
hardware acceleration of specific algorithms utilized in genome
sequencing. Darwin [58], GenAx [21], and others [12], [13],
[25], [36], [59], [62] accelerate the algorithms used in the
alignment stage while several works [6], [26], [38] accelerate
pair-HMM algorithms utilized in the variant calling stage. Such
specialized accelerators, targeting a specific implementation of a
particular genome sequencing pipeline stage, have demonstrated
multiple orders of magnitude speedups and energy efficiency
improvements. With these specific algorithm accelerations in
place, the remaining un-accelerated analysis stages that contain
generic data manipulation operations become the bottleneck and
a large portion of the genomic analysis execution time, making
them good targets for acceleration pursuant to Amdahl’s law.

An important aspect of genomic data analysis is that the
algorithms are still being refined and special care is needed
when proposing hardware acceleration. For example, INDEL
realignment was the major performance bottleneck in the now
deprecated GATK3 and thus a hardware accelerator targeting
the stage was proposed [62]. However, GATK4 does not utilize
this stage with its updated variant calling algorithms rendering
the proposal largely suitable for legacy pipelines. Similarly,
accelerators targeting the pair-HMM algorithms used in the
variant calling stages of GATK4 are likely being replaced by
the DNN-based algorithm for the same stage [51]. Noting the
rapid changes in specific algorithms, we argue that designing
accelerators for the generic data manipulation portions of the
pipelines is just as important, if not more, than designing
accelerators for the specific algorithms.

Our work aims to address the computational challenges
of genomic data analysis by introducing Genesis, a flexible
acceleration framework that targets generic data manipulation
operations commonly used in genomic data processing. We
observe that there are ample similarities between the operations
needed to perform genomic analytics and traditional big data
analytics. We propose treating genomic data as traditional data
tables and use extended SQL as a domain-specific language to
process genomic analytics. Conceptualizing the genomic data
as a very large relational database allows us to reason about the
algorithms and transform genomic data processing stages into
simple extended SQL-style queries. Once the queries (a.k.a.
genomic analysis stages) are constructed, Genesis facilitates the
translation of the queries into hardware accelerator pipelines
using the Genesis hardware library that accelerates primitive
operations in database and genomic data processing. We design
and deploy Genesis-generated accelerators on Amazon EC2
F1 instances [3].

As a proof of concept for the Genesis framework, we
accelerate the data preprocessing phase in GATK4 Best
Practices. We show how multiple stages of the preprocessing
phase can be represented in extended SQL-style queries and
demonstrate that the accelerated system targeting these queries

provides a significant performance improvement and cost saving
over a commodity CPU hardware platform.

This paper makes the following contributions:
• We present Genesis, a hardware acceleration framework

for generic data manipulation operations in genomic data
processing pipelines. With our framework, users represent
genomic data manipulation operations with standardized
SQL and user-supplied custom operations. Then, Genesis
aids the rapid translation of such representations to a
performant, cloud-deployment-ready hardware accelerator.
Specifically, Genesis provides a hardware library which
contains configurable hardware modules that accelerate
common operations in a relational database as well
as genomic-data-specific operations. With this hardware
library, users can easily stitch these hardware modules to
construct a pipeline targeting the specific query. The result-
ing hardware is automatically augmented with parallelism,
efficient memory accesses, and easy-to-use high-level user
interfaces between the host and the accelerator.

• As a proof of concept, we implement and deploy hardware
accelerators for the three stages of the preprocessing
pipeline in GATK4, mark duplicate, metadata update,
and base quality score recalibration using Genesis. We
show that our accelerated system deployed on the Amazon
Web Services (AWS) cloud FPGA achieves up to 19.3×
speedup and 15× cost reduction compared to software
running on a commodity multi-core CPU platform.

II. BACKGROUND

We provide a brief background on genomics for the readers
to better understand our proposal.
Genome. A genome is an organism’s complete set of DNAs.
For a human genome, it contains information for all 22 paired
chromosomes and a sex chromosome pair. Each chromosome
is represented as a sequence of DNA base pairs, where each
base pair is expressed as a single character (i.e., A, T, C, G)
representing a DNA nucleotide base. Typical sequence lengths
for human chromosomes range from 50 million to 250 million
base pairs, and a human genome contains roughly 3 billion
base pairs in total.
Genomic Analysis. Genomic analysis uses genomic features
such as a DNA sequence to identify variations from a biological
sample containing a full copy of the DNA against a reference
genome. Our work focuses on genomic analysis through the
Next Generation Sequencing (NGS) technology, the de-facto
technology for the whole genome analysis. In this process,
fragmented DNA samples are read by a NGS wet lab instrument.
Raw sensor data from the instrument are processed through
an equipment-specific proprietary software (or hardware) and
the instrument outputs processed data called reads. Reads
contain multiple fragments from a sequence of base pairs
and a sequence of quality scores where a single quality score
represents the machine’s confidence of the corresponding base
pair measurement. This process of post-measurement analysis
is called the primary analysis and the outcome of the primary
analysis is an input to the secondary analysis. Secondary

ACGTAAC CAGTAReference

Read 1
Read 2

AGGTAACACGGTA
TTTTAAC CA TA

111
1234567 89012Position

CIGAR
(alignment
metadata)

(7M, 1I, 5M)
(3S, 6M, 1D, 2M)

Fig. 2. Example Read Alignment.

analysis is a process of identifying genomic variants. Since it
is very computationally demanding, this is what most computer
software/hardware research (including ours) focuses on. Once
these genomic variants are identified, they can be used to
analyze the specific characteristics of this DNA (e.g., disease
risk).
Genomic Read Data. Aligned read data is the most important
data type in the preprocessing phase of genomic analysis.
Aligned read data contains the chromosome identifier (that this
read is aligned to), the position within the chromosome that
the mapped read starts from, the sequence of base pairs, and
the sequence of quality scores. In addition, the aligned read
contains metadata about the alignment called CIGAR (Concise
Idiosyncratic Gapped Alignment Report). CIGAR summarizes
the alignment information about the read and is represented
with a list of (integer, operation type) pairs with the integer
indicating the number of base pairs and the operation indicating
aligned (M), inserted (I), deleted (D), or soft-clipped (S).

For example, Read 1 in Figure 2 has a CIGAR of (7M,
1I, 5M). This indicates that the read’s first seven base pairs
are aligned (7M), the next single base (i.e., A) is inserted
and not present in the reference (1I), and the next five bases
are again aligned (5M). Note that aligned (M) can either
mean a match or a mismatch to the reference in the actual
base pair. Read 2 in Figure 2 has a CIGAR of (3S, 6M,
1D, 2M). Here, S indicates that the aligner ended up not
considering this soft-clipped portion to determine the alignment.
D represents a deletion where the base pair present in the
reference sequence is not present in the read. In addition to
CIGAR, there are several other fields in an aligned read such
as flags, mapping quality, information about the paired read,
etc. While our hardware handles those fields appropriately, we
omit the detailed explanations and implementation descriptions
for conciseness.

III. GENESIS FRAMEWORK

A. Overview

Genesis is a framework which enables users to rapidly
deploy the hardware accelerators for the data manipulation
operations in genomic data analysis workloads. Based on the
observation that genomic data can be conceptualized as a
very large relational database and most data manipulation
operations in genome sequencing can be expressed in database
operations, Genesis adopts an extended SQL-style interface
that allows users to express the target data manipulation
operations. One important aspect here is that such SQL
representations (i.e., queries) can also be represented as a
series of relational operators (often called the logical query

plan). Genesis framework facilitates the process of hardware
accelerator designs for such queries by providing a set of
configurable hardware modules that directly map to many
common relational operators (e.g., join, aggregate, etc.). With
the Genesis hardware library, a user can easily configure a
simple dataflow architecture by stitching them using high-
level hardware description language (e.g., Chisel [14]). The
resulting design is augmented with our framework, which
provides support for parallelism, performant memory system
accesses, and high-level APIs which enable the user to easily
manage the data and control communications between the
host (a commodity x86_64 Xeon server) and the hardware
accelerator. For deployment and evaluation, this design is
compiled into Verilog and synthesized, placed, and routed
into an FPGA image. This image then can be deployed with a
local or a cloud FPGA such as an AWS F1 instance.

In this section, we describe how a user can represent
a genomic analysis pipeline as an extended SQL query
(Section III-B), how a set of modules in the Genesis hardware
library (Section III-C) can be assembled to construct a hardware
accelerator pipeline targeting the query (Section III-D), how
a user can utilize our simple high-level APIs to manage the
accelerators from the host (Section III-E), and how a user can
extend our framework by adding custom computation modules
(Section III-F).

B. Genesis SQL Interface

TABLE I
EXAMPLE GENOMICS DATA TABLE REPRESENTATIONS.

Field Data Type Remarks
Read Table (READS)

CHR uint8_t Chromosome Identifier (1,..., 22, X, Y)
POS uint32_t Leftmost position of this aligned read

ENDPOS uint32_t Rightmost position of this aligned read
CIGAR uint16_t[CLEN] An array of cigar operations

SEQ uint8_t[LEN] Sequence of base pairs (e.g., A,C,G,T)
QUAL uint8_t[LEN] Sequence of quality scores

Reference Table (REF)
CHR uint8_t Chromosome Identifier (1,..., 22, X, Y)

REFPOS uint32_t Starting position of reference segment
SEQ uint8_t[PSIZE+LEN] Sequence of base pairs

IS_SNP bool[PSIZE+LEN] A bit indicating whether the corresponding
position is a known site of variation

Representation. Genesis utilizes SQL as a domain-specific
language to represent the target genomic analysis operation
for acceleration. The genomic read and reference data are
represented as tables with schemas shown in Table I. Reads are
represented as rows in the table and attributes associated with
each read are represented as columns. In our evaluated data set
(i.e., Illumina [27] sequencer reads for a specific human), there
are more than 700 million reads and each read has up to 151
base pairs (i.e., LEN = 151). A reference sequence is fragmented
into many segments and each segment is represented as a
row in the reference table. We configure a single row in the
reference table to have about 1M base pairs (i.e., PSIZE = 1M).
The reference table also has a column named IS_SNP (Single-
Nucleotide Polymorphism), which is a bitmap representation
of the known sites of base pair variations (i.e., this position’s

ACGTAAC CAGTAReference

Read 1
Read 2

AGGTAACACGGTA
TTTTAAC CA TA

111
1234567 89012Position

Base Pair Sequences

CIGAR List
(2S,3M,1I,1M,1D,2M)

POS
104

Aligned
ReadsTo

Bases

A G G T A A A C A
104 105 106 Ins 107 108 109 110

G T A A A Del C A

104 G 9
105 T >
106 A >
Ins A A
107 A A
108 Del Del
109 C B
110 A ?

104 2S,3M,1I,1M,1D,2M AGGTAAACA ##9>>AAB?
SEQCIGAR ListPOS QUAL ReadExplode

POS BP QUAL

Fig. 3. ReadExplode Operation Example.

base pair is known to vary across individuals) for the reference
fragment. When a locus (or location, position) is identified as an
SNP known site, a base pair mismatch at that locus is expected
and therefore does not count as an error. This column is used
in the base quality score recalibration algorithm described in
Section IV-D.

Partitioning. A common data manipulation operation in
genomic data processing is to compare a read’s base pair
sequence to the corresponding reference sequence. For such
operations, it is often helpful to pre-partition both the read table
and the reference table to multiple smaller tables based on their
chromosome identifier (CHR), and positions (i.e., READS.POS or
REF.REFPOS) to make finding reads’ corresponding reference
fragments easier. We partition the read table first by CHR and
then again by POS so that the nth partition for a chromosome
would have reads whose positions fall in the interval [(n−1)×
PSIZE, n× PSIZE]. We also partition the reference table so
that the nth partition for a chromosome would have reference
sequence whose positions fall in the interval [(n− 1)× PSIZE,
n× PSIZE+LEN]. For both tables, we assign a unique partition
ID (PID) to each partition. With this partitioning scheme, a
read can simply obtain a relevant reference sequence fragment
by inspecting the reference table with the same PID.

Supported SQL-style Operations. Genesis supports common
SQL operations such as Select, Where, GroupBy, Join,
Limit (used to select a subset of rows), Count, and Sum. In
addition, we support two additional operations PosExplode and
ReadExplode. PosExplode(COL,INITPOS) converts an array
in a single row of a single column (COL) to multiple rows with
an extra POS column that starts from the position INITPOS (POS
is incremented by one for every row that is exploded). This
is similar to the PosExplode operation that already exists in
Hive QL [57] and Spark SQL [5]. ReadExplode is a genomics
specific operation that is explained in the next paragraph. Lastly,
we support iteration over rows with the FOR Row IN Table
clause, which is similar to that of Oracle PL/SQL [46].

ReadExplode. This operation converts a read, stored as a
single row in the READS table, to multiple, separate rows
where each row contains the base, the corresponding quality
score, and its position. Figure 3 shows the example operation
of ReadExplode. ReadExplode requires POS, CIGAR, SEQ, and
QUAL (optional) columns of a READS table as inputs. This
operation converts individual base pairs and corresponding
quality scores into separate rows utilizing its alignment
information recorded in CIGAR (explained in Section II). In
this example, two leftmost base pairs corresponding to 2S part
of the CIGAR are clipped and thus not included in the output.
The next three matching base pairs and corresponding quality

/* I1: Extract Reads and Reference Partition P */
CREATE TABLE ReadPartition AS
SELECT POS, ENDPOS, CIGAR, SEQ
FROM READS PARTITION (P)
CREATE TABLE ReferenceRow AS
SELECT POS, SEQ
FROM REF PARTITION (P)
/* I2: posExplode on ReferenceRow */
CREATE TABLE RelevantReference AS
PosExplode (ReferenceRow.SEQ, ReferenceRow.POS)
FROM ReferenceRow
DECLARE @rlen int
/* Iterate over Rows */
FOR SingleRead IN ReadPartition:
SET @rlen = SingleRead.ENDPOS - SingleRead.POS)
/* Q1: ReadExplode to convert a read into multi-row

table where each row represents a base pair */
CREATE TABLE #AlignedRead AS
ReadExplode (SingleRead.POS, SingleRead.CIGAR,

SingleRead.SEQ)
FROM SingleRead
/* Q2: Inner-Join two tables with the base pair’s

corresponding position as a key */
CREATE TABLE #ReadAndRef AS
SELECT #AlignedRead.SEQ, RelevantReference.SEQ
FROM #AlignedRead
INNER JOIN (SELECT * FROM RelevantReference LIMIT

SingleRead.POS, rlen)
ON #AlignedRead.POS = RelevantReference.POS
/* Q3: Find the sum of matching base pairs */
INSERT INTO Output
SELECT SUM(#AlignedRead.SEQ == RelevantReference.SEQ)
FROM #ReadAndRef

END LOOP;

Fig. 4. Example queries to find the number of bases in the read within the
partition P that matches with the reference. This sequence of SQL queries are
organized as two initialization steps (I1 and I2) and three query steps (Q1,
Q2, and Q3).

POS END
POS CIGAR SEQ

2 5 4M1I ATAGA
14 16 3M2I TACTG
17 21 1S4M CCGAT

POS SEQ
1 AATCGAG …

ReferenceRow

ReadPartition

POS SEQ
1 A
2 A
3 T
4 C
5 G
… …

POS SEQ
2 A
3 T
4 A
5 G

Ins A

POS REF
SEQ

RD
SEQ

2 A A
3 T T
4 C A
5 G G

CNT
3

posExplode

Read
Explode

Inner
Join
by

POS

Count
Match

Fig. 5. Execution Flow of the Example Query.

scores are assigned the appropriate position values and included
in the output as three separate rows. The following base pair
A is inserted (I), and thus its reference position is marked as
Ins, a special bit indicating that it is not in the reference. In
the case of a deleted (D) base pair (the base pair with position
108 in the example), the reference position is included in the
output, but the base pair column and the quality score column
are marked as deleted (Del).

Example Query. We use an example to illustrate how to
construct queries for a genomic data analysis operation and
walk through the execution of the query using a high level
block diagram. We want to find the number of bases that
matches the reference for all reads whose partition ID is
equal to the constant P. In this case, the user can represent
this operation as a sequence of SQL queries as shown in
Figure 4, which essentially follows the execution flow depicted
in Figure 5. Step 1: the set of reads and the relevant reference

G G A
12 8 6

T A T
13 8 7

…

Queue 1

Queue 2

Selector

Index

13 11 9

Key
Data

Key
Data

Data
G
A

Output
Queue

5 3 2
4 1 3

3 1 2
1 6 2

Output
Queue

Queue

(Inner) Joiner

Reducer (Sum)

1 3 2

3 0 7

ALU

4 3 9

Output
Queue

Data

Data

Data

Queue 1

Queue 2

Sorted seq.

9 2 2
3 2 7

Filter

2

Output
Queue

Vector Filtered data

Queue

Comparator

==
Condition

Dropped

9 2
3 7

Vector

Data

Comparator

Fig. 6. Genesis Data Manipulation and Computation Modules.

with the partition ID PID = P are first extracted (I1). Step 2:
the relevant reference row’s base pair sequence is expanded
into multiple rows with PosExplode (I2). Step 3: for each
read in the ReadPartition, its base pairs are converted to a
multi-row table with ReadExplode (Q1). Step 4: inner-join the
ReadExplode’ed table and the subset of the PosExplode’ed
reference row table (the subset is obtained with the LIMIT
base offset clause) to obtain a joined table that allows us
to extract base matching information (Q2). Step 5: the number
of matching base pairs (i.e., a read’s base pair is identical to
the reference’s base pair) are computed and inserted into the
output table (Q3).

C. Genesis Hardware Modules

Overview. In Genesis framework, re-configurable hardware
modules are assembled to accelerate genomic data manipulation
operations. Genesis adopts a dataflow execution model where
multiple independent modules are connected to each other
via hardware queues. Each hardware module operates with a
sequence of data called streams. A stream consists of many
data items, each of which can contain multiple different types
of fields. Each data item is also divided into multiple flits, where
a single flit represents the atomic unit of data communication
and operation. For example, when a sequence of reads forms a
single stream, each read is a data item, and each base pair (or
multiple base pairs), which is part of a base pair sequence in a
read, is a flit. In general, each module consumes (or inspects) a
single flit from its input queue(s) and generates a single output
flit. The output flit is then inserted to the output queue, which
will work as an input queue for the next module. Figure 6
shows some of the key Genesis hardware modules and we
discuss each module in detail below.

Data Manipulation & Computation Modules
Joiner. Joiner merges flits from two input queues and produces
a single output. For this module, a flit in an input queue should
consist of the key field and the data field. In addition, the flits
from the input queue should be supplied in ascending order of
the key. Every cycle, this module compares keys of the flits
from two input queues and either outputs or discards a single
flit with the smaller key while leaving the other one intact. If
both flits from two input queues have the same key, their data
fields are merged (through concatenation). Specifically, this
module can be configured to either perform an inner-join (i.e.,
discard flits without matching key), a left-join (i.e., discard

flits from the second queue if it does not have a matching key
in the first queue), or an outer-join (i.e., never discard flits).
Filter. Filter takes input data from a single queue, checks
whether it matches the specified comparison condition (across
fields or for a field and a constant), and outputs the item if
and only if the item satisfies the specified condition.
Reducer. Reducer takes a sequence of data and performs
a reduction operation (e.g., Sum, Max, Min, Count) with
a reduction tree. For this module, a single flit can contain
multiple values, and a reduction tree is utilized to obtain a
single reduction result at a throughput of a single flit per
cycle. Note that this module can also support reduction across
multiple flits (i.e., reduction at an item granularity) and masked
reduction, which means that a bit-mask (single bit per value)
can be supplied to apply reduction on a subset of the data.
ALU. Stream ALU takes input data from a single or two
input queues (or a single input queue and a constant item)
and performs a relatively simple unary/binary ALU operation
(e.g., NOT, ADD, SUB, CMP, AND, OR, etc.) with data from
those queues. This module takes a single item from each queue,
performs a binary operation, and outputs a single item. When a
single item contains multiple values, the unary/binary operation
is performed in an element-wise manner. Similar to a reducer,
this module can also take a bit-mask sequence and conditionally
perform unary/binary operations.

Memory & Scratchpad Memory (SPM) Access Modules
Memory Reader. Memory reader is in charge of reading
contiguous data from memory and streaming the read data
to the next module. Given a starting address and the total
amount of data to read from memory, it continuously sends
memory requests to memory at a memory access granularity
(e.g., 64B) as long as its internal prefetch buffer is not full.
At the same time, this module supplies the returned data from
memory to the next module at a throughput of a single flit per
cycle. Note that the flit granularity can be different from the
memory access granularity.
Memory Writer. Memory writer is in charge of writing the
data coming from an input queue to memory. It takes a single
flit from the previous module per cycle and temporarily stores
it to its internal buffer. Once its internal buffer size reaches the
size of the memory access granularity (or a specific termination
condition), it sends a write request to memory starting from
the pre-configured starting address.
SPM Reader. SPM (Scratchpad Memory) reader simply takes
an address from the input queue and outputs the scratchpad
read result to the output queue. It can also be configured to
read all elements in the interval when the starting address and
the finishing address are provided. This module is also used
to drain all of its content to the output queue when a drain
signal is provided.
SPM Updater. SPM updater takes an address and the value
from an input queue and updates the scratchpad memory. This
module supports three operating modes. First, it can work
like a memory writer which performs sequential writes to the
SPM buffer when provided a starting address. It can also be

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)
Memory Reader

(REFS.SEQ)

MEMORY

SPM Updater
SPM

SPM Reader

ReadToBases Filter
Read bp=Ref bpInner Joiner

Reducer
(COUNT)

Memory Writer

Ref
bp

Read
bp

Fig. 7. Constructed Hardware Pipeline for the Example Query in Figure 4.

Memory Reader
READS SEQ)

Memory Reader
READS C GAR)

Memory Reader
READS POS)

Memory Reader
READS ENDPOS)
Memory Reader

REFS SEQ)
SPM Updater

SPM
SPM Reader

ReadToBases Fi ter
Read bp=Ref bpInner Joiner

Reducer
(COUNT)

Memory Wri er

Ref
bp

Read
bp

Memory Reader
READS SEQ)

Memory Reader
READS C GAR)

Memory Reader
READS POS)

Memory Reader
READS ENDPOS)
Memory Reader

(REFS SEQ)
SPM Upda er

SPM
SPM Reader

ReadToBases Fi ter
Read bp=Ref bpnner Jo ner

Reducer
(COUNT)

Memo y Wr ter

Ref
bp

Read
bp

Memory Reader
(READS SEQ)

Memory Reader
(READS CIGAR)

Memory Reader
(READS POS)

Memory Reader
(READS ENDPOS)
Memory Reader

(REFS SEQ)
SPM Updater

SPM
SPM Reader

ReadToBases F lter
Read bp=Ref bpInner Joiner

Reducer
(COUNT)

Memory W iter

Ref
bp

Read
b

Memory Reader
(READS SEQ)

Memory Reader
READS CIGAR)

Memory Reader
READS POS)

Memory Reader
(READS ENDPOS)
Memory Reader

RE S SEQ)
SPM Updater

SPM
SPM Reader

ReadToBases Fil er
Read bp=Ref bpInner Joiner

Reducer
(COUNT)

Memory Wri er

Ref
bp

Read
bp

Local
Arbiter

Local
Arbiter

To/From Memory

Local
Arbiter

Local
Arbiter

Global Arbiter

Fig. 8. Parallel Configurations of Genesis Hardware Pipelines. The pipeline
in Figure 7 is replicated for four times.

configured to perform a random SPM write, which simply
writes the value to the provided address. Finally, it can also
be configured to perform a read-modify-write update with
the provided modify function (e.g., add/subtract a constant).
When configured to perform a read-modify-write update, the
hardware needs to ensure that two flits with the same address
will not be processed in these pipeline stages (i.e., read, modify,
write) at the same time to avoid the RAW (read-after-write)
hazard. For this purpose, our hardware buffers addresses that
are being processed in these pipeline stages and checks if the
incoming flit’s address matches with any of these three buffered
addresses. If so, the hardware prevents this incoming flit from
starting the read stage.

Genomic Data Processing Modules
ReadToBases. This is the module that supports the
ReadExplode operation explained in Section III-B. This mod-
ule takes a sequence of CIGAR, POS, SEQ, and optionally QUAL
values from the input queues and produces a ReadExplode’ed
table. Each cycle, this module outputs the tuple of the reference
position, the corresponding base, and the quality score. Here,
as shown in Figure 3, the reference position may be Ins if the
base is an inserted base. Similarly, the base and quality score
fields can be Del if the base is deleted.

D. Construction of Hardware Pipeline with Genesis

Example Pipeline. Genesis accelerates the user-provided query
by constructing a hardware pipeline using multiple Genesis
hardware modules written in Chisel. For example, the SQL
query in Figure 4 is translated to the hardware pipeline shown
in Figure 7. The hardware pipeline in Figure 7 has five
memory readers and each reader reads the data streams from
READS.POS, READS.ENDPOS, READS.CIGAR, READS.SEQ, and
REFS.SEQ. Three of these memory readers (the ones reading
READS.POS, READS.SEQ, and READS.CIGAR) are connected to
the ReadToBases module which generates a sequence of flits
where each flit is a pair of a base and the corresponding
reference position. This generated sequence is then provided
as an input to the Joiner (configured to perform an inner-join).

Unlike the reads data, the relevant reference data is mapped
to an on-chip SPM to facilitate data reuse. A single memory
reader (the one reading REFS.SEQ) is connected to the SPM
Updater module so that it can initialize the SPM with data from
memory. The contents from this SPM is retrieved with the SPM
Reader which takes two inputs from the memory readers (the
ones reading READS.POS and READS.ENDPOS), reads the SPM
contents for the corresponding interval, and supplies the read
data (i.e., reference base pairs) to the Joiner. The Joiner takes
these two input sequences (i.e., one from the read, another
from the reference), performs an inner-join, and passes the
joined sequence to the Filter which compares two data fields
(i.e., the base pair from the read and the base pair from the
reference), and only outputs the matching items. Lastly, the
Reducer module accumulates the number of matched base pairs
and passes the outcome to the memory writer which stores the
outcome to memory. The constructed pipeline is fully-pipelined
and can process a single base pair per cycle.
Pipeline Construction. For now, our framework assumes that
the process of translating SQL-style queries to the hardware
pipeline is manual. However, we envision it to be automated
in the near future. SQL queries can be easily parsed into a
tree graph where each node represents a table (leaf node) or a
relational/computational operator (non-leaf node) [47]. Since
the Genesis hardware library (Section III-C) provides various
modules for each relational operator and each genomics-specific
operator, designing a hardware pipeline corresponding to such
a query plan (or a tree graph) is rather simple. Specifically,
each node in the graph can be mapped to a Genesis hardware
module, and each edge in the graph is mapped to a hardware
queue connecting these modules. For better resource allocation,
the user can provide a hint to the translator so that frequently
re-used tables are allocated to on-chip SPMs instead of off-chip
memory (as in Figure 7).
Parallelism. A single pipeline is often insufficient to fully
utilize the available memory bandwidth provided to the system.
In order to fully utilize the available memory bandwidth and
achieve high throughput, it is necessary to exploit abundant
parallelism in genomic data processing operations through the
use of multiple pipelines. Figure 8 shows how Genesis exploits
parallelism through the use of multiple pipelines. Genesis treats
each pipeline to be independent of each other except that they
share memory interfaces and the command interfaces. This
separation allows the utilization of different hardware pipelines
targeting different operations to work together. As shown in
Figure 8, input/output ports of all hardware pipelines’ memory
modules are first arbitrated by a local arbiter and then arbitrated
again by one of the global arbiters, each of which is connected
to one out of four memory channels in the system. The same
structure applies to the command interface as well.

E. Genesis Application-Programmer Interface

To run Genesis-generated hardware pipeline, the user needs
to configure the hardware memory readers and writers using
the following C++ function.

void configure_mem (void* addr, int elemsize, int

len, string colname, int pipelineID)

Configuration. This blocking function needs to be invoked
once for each memory reader and writer, which is in charge
of reading/writing specific columns of the table. The function
argument addr represents the address where the data for a
column is located in the host address space, elemsize repre-
sents the size of an element for the column, len represents the
number of rows that the column has, and colname represents
the name of the column in the query. Lastly, pipelineID
is necessary to specify the pipeline when there are multiple
pipelines executing in parallel. Once invoked, this function
copies the column data to the accelerator memory (if it is
a memory reader) and configures the corresponding memory
reader (or writer).
Execution and Completion. Once all memory read-
ers and writers (for a specific pipeline) are config-
ured, the user can execute the non-blocking call void

run_genesis(int pipelineID) to start the execution. At
this point, the user can run another non-blocking call
bool check_genesis(pipelineID) to see if the accelera-
tor execution is completed or use the blocking call void

wait_genesis(pipelineID) to wait until the accelerator exe-
cution is finished. Once the accelerator execution completes,
the user will then use void genesis_flush(pipelineID) to
get the data back from the accelerator memory to the host
memory address configured with configure_mem(..). Note
that the existence of these non-blocking calls is to allow the
host CPU to perform useful work while the accelerator is
running.

F. Extending Genesis with Custom Operations

While the standard SQL clauses, supported by the Genesis
hardware library modules, are expressive enough to sup-
port many data operations in genomic analytics workloads,
some data manipulation operations can benefit more from
the capability to add a custom operation. Genesis allows
a user to add a custom module that performs the desired
computation. To add a custom module, a user needs to write
a Chisel module with the provided interface which takes
inputs from one or multiple streams and outputs data to a
single output stream. Then the user can invoke this module
using our SQL-style interface as follows: EXEC ModuleName
InputStream1 = _ InputStream2 = _ · · · InputStreamN =
_. This is similar to the user-defined function/procedure call
semantics in many SQL implementations.

IV. ACCELERATING GENOME SEQUENCING WITH GENESIS

A. GATK4 Best Practices Data Preprocessing Pipeline

GATK4 Best Practices presents a step-by-step recommenda-
tion for the state-of-the-art genome variant discovery analysis
(i.e., secondary analysis). In GATK4, the genome variant
discovery process is divided into two phases. The first phase is
the data preprocessing phase, which takes base pair sequences
and the associated quality score sequences as inputs and refines

Alignment
63.4%

Duplicate Marking
27.2%

Duplicate
Marking
10.0%

Metadata Update
41.8%

Metadata
Update
15.4%

BQSR
(covariate table
construction)

12.4%

4.6%

BQSR
(quality score

update)
11.6%

4.3%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

BQSR
9.3%

GATK4 Data
Preprocessing

GATK4 Data
Preprocessing

(With Alignment
Accelerator)

Fig. 9. Runtime breakdown of the GATK4 Best Practices data preprocessing
pipeline on an AWS system with eight cores.

their alignment accuracy. The second phase is the variant
discovery phase, which identifies and filters the variants or the
differences of the measured genome from the reference genome.
Here, the first phase is a single pipeline that precedes all types
of variant discovery phases. For the second phase, there are
many variant discovery pipelines, each targeting a different
type of variant that can occur in a genome (e.g., germline
variants, somatic variants, copy-number-variants, etc.). In this
section, we focus on accelerating the data preprocessing phase
since this phase often takes a substantially larger amount of
time than the variant discovery phase (regardless of the type
of the variant discovery). However, our proposed design can
be utilized in several different data manipulation operations
present in many variant discovery pipelines as well.

The data preprocessing phase consists of four major stages:
alignment, mark duplicates, metadata update, and base quality
score recalibration. The alignment stage takes a set of the reads
(i.e., short base pair sequence and the associated quality score
sequence) and maps each read to the appropriate position of the
reference sequence. After the alignment, the mark duplicates
step happens. In this step, all reads mapped to the exact same
starting position are considered as duplicates, which resulted
from the same DNA fragment, and thus all but a single read
is removed from each duplicate set. In addition, this step also
sorts all reads based on their starting positions. Following
this step, a few metadata for each read is generated. Such
metadata include information about the differences between a
read and the corresponding reference sequence. Lastly, the base
quality score recalibration (BQSR) stage refines the quality
score (for each base pair) provided by the instrument. This stage
is divided into two sub-stages: covariate table construction and
quality score update. During the covariate table construction
stage, the algorithm first goes through all base pairs and counts
the error rates (i.e., mismatches with the reference sequence)
across different potential sources of biases (e.g., the lane of the
sequencing instrument used for measurement). Then, during
the quality score update stage, the algorithm adjusts each base
quality score based on the empirical error rates across different
conditions and makes each quality score better match the
empirical quality score.

Figure 9 shows the runtime breakdown of the GATK4
Best Practices data preprocessing pipeline (with the evaluation
setting shown in Table II). As depicted, most of the runtime
is spent on three major stages on a system with eight cores.
Among the three major stages, the alignment takes the most
time (i.e., 63.4 %). However, recent hardware accelerators such
as GenAx [21] achieves over 4058K/reads throughput in the
alignment stage. If we assume such throughput on the alignment

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)
Memory Reader

(REFS.SEQ)
SPM Updater

SPM
SPM Reader

ReadToBases Filter
Read bp=Ref bpInner Joiner

Reducer
(COUNT)

Memory Writer

Ref
bp

Read
bp

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)
Memory Reader

(REFS.SEQ)
SPM Updater

SPM
SPM Reader

ReadToBases Filter
Read bp=Ref bpInner Joiner

Reducer
(COUNT)

Memory Writer

Ref
bp

Read
bp

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)
Memory Reader

(REFS.SEQ)
SPM Updater

SPM
SPM Reader

ReadToBases Filter
Read bp=Ref bpInner Joiner

Reducer
(COUNT)

Memory Writer

Ref
bp

Read
bp

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)
Memory Reader

(REFS.SEQ)
SPM Updater

SPM
SPM Reader

ReadToBases Filter
Read bp=Ref bpInner Joiner

Reducer
(COUNT)

Memory Writer

Ref
bp

Read
bp

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)
Memory Reader

(REFS.SEQ)

MEMORY

SPM Updater
SPM

SPM Reader

ReadToBases Filter
Read bp=Ref bpInner Joiner

Reducer
(COUNT)

Memory Writer

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)
Memory Reader

(REFS.SEQ)
SPM Updater

SPM
SPM Reader

ReadToBases Filter
Read bp=Ref bpInner Joiner

Reducer
(COUNT)

Memory Writer

Local
Arbiter

Local
Arbiter

To/From Memory

Local
Arbiter

Local
Arbiter

Global Arbiter

POS END
POS CIGAR SEQ

2 5 4M1I ATAGA
14 16 3M2I TACTG
17 21 1S4M CCGAT

POS SEQ
1 AATCGAG …

ReferenceRow

ReadPartition

POS SEQ
1 A
2 A
3 T
4 C
5 G
… …

POS SEQ
2 A
3 T
4 A
5 G

Ins A

POS REF
SEQ

RD
SEQ

2 A A
3 T T
4 C A
5 G G

CNT
3

posExplode

Read
Explode

Inner
Join
by

POS

Count
Match

Memory Reader
(READS.QUAL)

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)

Memory Reader
(REFS.SEQ)

MEMORY

SPM Updater
SPM

SPM Reader

ReadToBases Left Joiner

Reducer
(COUNT)

Memory Writer

Filter
Read bp≠Ref bp

MDGen

UQ

Reducer
(SUM)

MD

Memory Writer
NM

Memory Writer

QUAL

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)

Memory Reader
(REFS.SEQ)

Memory Reader
(REFS.IS_SNP)

MEMORY

SPM

SPM
Reader

ReadTo
Bases

Inner
JoinerBinIDGen Filter

!IS_SNP

ErrCntBuf #1 ErrCntBuf #2 TotalCntBuf #1TotalCntBuf #2

ALU(NOR)IS_SNP

IS_SNP, COMP

SPM
Updater

Ref
bp

Read
bp

Filter
Read bp≠ Ref bp

Ref
bp

Read
bp

Figure 7

Figure 8

Figure 11

Figure 5

Read
bp

Ref
bp

SPM Updater SPM Updater SPM Updater SPM Updater

b1,b2 Read bp

Ref bp

SPM
TotalCount#1

SPM
TotalCount#2

SPM
ErrorCount#1

SPM
ErrorCount#2

b1 b2

SPM
Reader

Mem.
Writer

Figure 12
SPM

Reader
Mem.
Writer

SPM
Reader

Mem.
Writer

SPM
Reader

Mem.
Writer

b1 b2

MEMORY

Reducer
(SUM)

Memory WriterMemory Reader
(READS.QUAL)

Fig. 10. Hardware for the Mark Duplicates Stage.

stage, the portion of time spent on the alignment stage shrinks
to merely 0.7% on an eight core system. Consequently, the
mark duplicates, metadata update, and the base quality score
recalibration stages now account for the majority (i.e., 93%)
of the runtime. As a proof of concept for our Genesis library,
we design accelerators targeting various operations within the
three stages: mark duplicates, metadata update, and base quality
score recalibration.

B. Accelerating Mark Duplicates

Algorithm. The goal of the mark duplicates stage is to identify
a set of reads originating from a single fragment of the
DNA. Duplicate reads result from the PCR (polymerase chain
reaction) amplification, which is part of the DNA sample
preparation process. To identify a set of duplicate reads, the
algorithm first generates a key value for each read. Specifically,
the unclipped 5’ prime positions of a read are used as a key
for the read. To obtain this value, the CIGAR value is inspected
and the number of soft clipped (S) bases at the front are
subtracted from the POS value1. Once these keys are computed,
the algorithm identifies sets of duplicate reads that share the
same key. Among those reads sharing the same key, all but
one with the highest sum of the quality scores are marked as
duplicates. In addition to marking the duplicates, this stage
also sorts all the reads by their aligned read start positions.
Acceleration. For this stage, our work focuses on the acceler-
ation of the sum-of-quality score computation. Our hardware
takes the QUAL column of each read as an input and computes
the sum of quality scores for each row. The host core simply
utilizes these sums of quality scores to determine duplicate
reads among the ones sharing the same key.
Hardware Composition. For this step, the hardware performs
a straightforward task of computing the sum of all quality
scores. Figure 10 shows the hardware pipeline for this task.
This is the most basic example of the Genesis pipeline which
simply takes a stream of data from the input with a Memory
Reader, performs a computation (i.e., sum reduction) with a
Reducer, and stores the result back to memory with a Memory
Writer. Here, the main benefit of hardware acceleration comes
from the use of large parallelism (across quality-scores and
across reads).

C. Accelerating Metadata Update

Algorithm. The metadata update stage in GATK4 (also
called SetNmMdAndUqTags) calculates three specific types of
metadata for each read: NM metadata, MD metadata, and UQ
metadata. NM metadata represents the number of mismatches

1In the paired-end sequencing technology, a key is generated per pair. The
key for each read of a pair is concatenated to construct the key for a pair.
One of the paired read is a reverse read and the number of soft-clipped (S)
bases at the end is added to the ENDPOS value to obtain the unclipped 5’ prime
positions for such a read.

Memory Reader
(READS.QUAL)

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)

Memory Reader
(REFS.SEQ)

MEMORY

SPM Updater
SPM

SPM Reader

ReadToBases Left Joiner

Reducer
(COUNT)

Memory Writer

Filter
Read bp≠Ref bp

MDGen

UQ

Reducer
(SUM)

MD

Memory Writer
NM

Memory Writer

QUAL

Read
bp

Ref
bp

Fig. 11. Hardware for the Metadata Update Stage.

compared with the reference base pairs in this read. MD
metadata is a specifically formatted string that enables the
recovery of the reference base pair sequence by inspecting
this metadata and the read base pair sequence. MD metadata
represents the sequence of contiguous matching bases as a
number and outputs the reference base pairs for the mismatched
base pairs or the deleted base pairs. Since the inserted base
pairs are not present in the reference, MD tag does not include
any information about insertions. As an example, Read 1 in
Figure 2 has a MD of 1C6A3 because it has a mismatch at the
second base pair and the ninth base pair. Lastly, UQ metadata
sums up the quality scores of the base pairs that mismatch the
reference base pairs. This metadata essentially represents the
likelihood that the read is erroneous. These updated metadata
are utilized in the latter steps of the genomic data processing
pipeline.

Acceleration. Genesis hardware takes POS, ENDPOS, CIGAR,
SEQ, QUAL columns from reads data and relevant REFPOS, SEQ
from the reference data as inputs and produces the computed
NM, MD, UQ metadata as outputs. These metadata are attached
to the original reads file in the software. For this task, the
reference and reads are pre-partitioned in software (as explained
in Section III-B) and a single invocation of the pipeline handles
a single partition. The accelerator is invoked multiple times to
finish processing the entire data set.

Hardware Composition. Figure 11 shows the Genesis hard-
ware pipeline for this stage. In a way, this pipeline is similar to
the example case covered in Section III. Specifically, the NM
metadata computation is almost identical to the example query
(Figure 4) except that it counts the number of mismatches,
which includes the insertions and the deletions. The Joiner
is configured to perform a left-join instead of an inner-join
to preserve the insertion/deletion information. UQ metadata
computation shares most of the front-end pipeline stages with
NM metadata computation but instead of counting the number
of mismatches, it performs a sum-reduction on filtered quality
scores. MD metadata computation is performed by passing the
outcome of the left-joiner to a custom module (MDGen) to
generate the MD tag. This custom module simply takes the
output of the left-joiner as an input stream and performs one
of the following: i) if the read base pair and the reference base
pair matches, increment the match counter or ii) if the base
pairs do not match, output the match counter and print the
reference base pair2.

2In the case where a deleted base pair is present in the read, print ^ along
with the reference base pair to indicate a deletion.

D. Accelerating Base Quality Score Recalibration

Algorithm. A genome sequencing instrument produces a
quality score for each base pair it identifies (or measures, calls).
This quality score represents the probability of the case where
the sequencing machine correctly calls this base pair. However,
it is known that these scores often do not match well with the
empirical error rate. For example, when the average quality
score for a particular read with 200 base pairs translates to 1%
error rate, this read is expected to have about two base pair
errors. However, due to various sources of systematic biases
(e.g., the lane of the sequencing machine used to process this
data), this expected error rate often does not match with the
empirical results obtained by manually counting the number
of mismatches between this read’s base-pair sequences and the
reference sequence.

To reduce the deviation of empirical quality scores from the
machine-generated base quality scores, the base quality score
recalibration (BQSR) stage first categorizes each base pair
from each read to different bins. Then, the BQSR algorithm
counts the number of entries and the number of errors for
each bin. Errors are counted when a reported base pair and
the corresponding reference base pair mismatches and the
particular base pair is not an SNP (i.e., the known sites of base
pair variations; see Section III-B). Specifically, two binning
policies are used in GATK4 BQSR. The first is to bin each
read base pair by its read group (i.e., the lane of the machine
that is used to process this read), the reported quality score,
and the relative position of the base pair within the read (called
cycle). The second policy is to bin each read base pair by
its read group, the reported quality score, and the type of the
base pair preceding this base pair, and the current base pair
(called context). Once the number of base pairs and the number
of errors in each bin are computed, the algorithm adjusts the
corresponding quality score of each base pair in each read
based on this statistic (i.e., a covariate table). The resulting
adjusted quality scores from BQSR are known to match very
well with the empirical quality scores [18].
Acceleration. For this stage, our work accelerates the binning
process of BQSR (i.e., the covariate table construction stage).
Our hardware accelerator takes reads and inspects each read
base pair. Then, it checks if a particular base pair mismatches
with the corresponding reference base pair as well as if this
read base pair maps to a non-SNP site. If so, the hardware
increments both the number of observations counter and the
number of errors counter for the corresponding bin. If not, it
only increments the number of observations counter. Once the
binning finishes, the GATK4 software tool reads the constructed
covariate table and adjusts the quality scores accordingly (i.e.,
the quality score update stage). For this stage, the reference
table is pre-partitioned in software as in the metadata update
stage. The reads table is first partitioned by its POS (as usual),
and partitioned again by its read group. A single pipeline
invocation handles a single read partition and hence multiple
invocations are necessary to finish the processing of the entire
data set.

Memory Reader
(READS.SEQ)

Memory Reader
(READS.CIGAR)

Memory Reader
(READS.POS)

Memory Reader
(READS.ENDPOS)

Memory Reader
(REFS.SEQ)

Memory Reader
(REFS.IS SNP)

MEMORY

SPM

SPM
Reader

ReadTo
Bases

Inner
JoinerBinIDGen Filter

!IS_SNP

SPM
Updater

Filter
Read bp≠ Ref bp

SPM Updater SPM Updater SPM Updater SPM Updater

b1 b2 Read bp

Ref bp

SPM
TotalCount#1

SPM
TotalCount#2

SPM
ErrorCount#1

SPM
ErrorCount#2

b1 b2

SPM
Reader

Mem.
Writer

SPM

Reader
Mem.
Writer

SPM
Reader

Mem.
Writer

SPM
Reader

Mem.
Writer

b1 b2

Fig. 12. BQSR (Covariate Table Construction) Hardware.

Hardware Composition. Figure 12 shows the Genesis hard-
ware pipeline for the BQSR stage. This pipeline shares part of
the front-end with the example hardware pipeline presented in
Figure 7. However, a different set of Genesis hardware library
modules are utilized to implement the new functionality. First,
a custom module (BinIDGen) which calculates two BQSR bin
IDs is added between the ReadToBases module and the Joiner
module. This module takes a sequence of base pairs and their
quality scores as inputs. For each base pair with quality score q,
it outputs the first bin ID b1 = q × # of cycle values + cycle
value 3. It also outputs another bin ID, b2 = q× # of context
types + context ID. Here, the number of context types is 16
and the context ID is assigned as follows: AA = 0, AC = 1, AG
= 2, AT = 3, CA = 4, ..., TT = 15.

A more significant functionality addition compared to the
pipeline presented in Figure 7 is the use of the IS_SNP column.
For this stage, this column is stored in the SPM similar to how
we store the REF.SEQ column. Outputs of the BinIDGen module
and the reference data outputs from the SPM (columns POS,
SEQ, and IS_SNP) are inner-joined with the Joiner which uses
the POS from both inputs as the key. The outcome of this join
is then passed to a Filter, which filters out all the data whose
IS_SNP column is true. The resulting output of the Filter is
first passed to two SPM Updaters (configured to perform read-
increment-write) associated with two SPMs (TotalCountBuffer
#1 and #2 in Figure 12) using input addresses b1 and b2
respectively. The outcome of the Filter is cascaded to another
Filter, which outputs only the items whose read base pair and
the reference base pair mismatches (i.e., the base pairs that are
counted as empirical errors). The results are finally passed to
the two SPM Updaters to update the ErrorCountBuffers #1 and
#2, similar to the way the TotalCountBuffers are updated. This
hardware pipeline counts the number of errors and the number
of total base pairs belonging to each bin (across two binning
addressing schemes) and store the results on four SPMs. Once
all reads within the partition are handled, the contents of the
SPMs are drained with the associated SPM Readers and then
stored in memory through the Memory Writer modules.

E. Applying Genesis for other Genomic Data Processing
Operations or Genome Sequencing Pipelines

The previous sections (Section IV-B, IV-C, and IV-D)
explored how Genesis can be used to accelerate three data
manipulation stages of the data preprocessing phase in the

3For our target data set, the # of cycle values is 302. The read length is 151
and hence the relative position in the read ranges from 0 to 150, but additional
cycle values are assigned for its reverse read as well.

GATK4 pipeline. However, this is not the only use of Gen-
esis. Genesis can also be used to accelerate genomic data
manipulation operations in other phases or pipelines. Our
preliminary analysis indicates that Genesis can be used for
other portions of the GATK4 genome sequencing pipeline such
as FM-index based seeding in the BWA-MEM aligner, active
region determination in the HaplotypeCaller, joint genotyping,
and intersection of training/truth resource sets and callsets in
Variant Quality Score Recalibration (VQSR), which essentially
consist of data consolidation, filtering, and matching operations.
Furthermore, Genesis framework can be used to accelerate the
post-sequencing analysis (e.g., checking whether a genome
sequence is susceptible to specific diseases), which are often
performed using relational database queries (e.g., GenAp [32],
Gemini [49]).

Genesis-generated accelerators are also applicable to variants
of the GATK4 Best Practices pipelines or other indepen-
dent genome sequencing pipelines. These data manipulation
operations are independent of the choice of alignment al-
gorithms (e.g., Minimap2 [35], DRAGEN aligner [20]) or
variant calling algorithms (e.g., Strelka2 [30], FreeBayes [22],
DeepVariant [51]), and thus applicable to many variants of
the GATK4 Best Practices pipelines. Moreover, many of the
data manipulation operations are common across different
genome sequencing pipelines. For example, pipelines such
as DRAGEN [20], Sentieon [29], or Berkeley ADAM [43],
perform similar tasks with slightly different algorithms for
specific stages (e.g., alignment, variant calling). Thus all or
most of Genesis-generated accelerators presented in this work
are applicable to such pipelines as well.

V. EVALUATION

A. Methodology

TABLE II
HARDWARE CONFIGURATIONS FOR THE AWS EC2 F1 AND R5 INSTANCE

Machine Configurations

AWS Instance System Components

f1.2xlarge Host Processors Intel Xeon E5-2686 v4 (Broadwell)
(for Genesis HW) 4C/8T, 2.3 GHz (Turbo 3 GHz)

Host Memory 122 GiB
Host Storage 500 GB SSD
FPGA 1x Xilinx Virtex UltraScale+ VU9P

2.5 M logic elements, 6,800 DSPs
FPGA Memory 64 GB
Cost (2019.11) $1.65/hr

r5.4xlarge Processors Intel Xeon Platinum 8175M (Skylake-SP)
(for GATK4 SW) 8C/16T, 2.5GHz (3.5 GHz Turbo Boost)

Memory 128 GiB
Storage 2TB SSD
Cost (2019.11) $1.01/hr (Compute), $0.28/hr (Storage)

To demonstrate Genesis’s capability to accelerate data ma-
nipulation operations in genomic data analysis, we implement
hardware accelerators (we call each hardware pipeline(s)
constructed for a particular algorithm an accelerator in the rest
of this paper to avoid confusion) for three key data manipulation
operations in the data preprocessing phase of GATK4 using the
Genesis framework, and deploy them on the commercial cloud

using the Amazon EC2 f1.2xlarge instances (Table II). Each
F1 instance contains a Xilinx Virtex UltraScale+ VU9P FPGA
card [3]. We use a 250MHz clock for all three accelerators. We
configure the number of pipelines to i) the resource limit we
can fit on one FPGA card or ii) the performance limit where an
accelerator can no longer get more speedup from parallelism
due to memory or communication bottlenecks. We used 16×
pipelines for mark duplicates, 16× pipelines for metadata
update, and 8× pipelines for base quality score recalibration.

To compare our design with the software-only implementa-
tion, we run GATK version 4.1.3 [9] on an AWS r5.4xlarge
instance (Table II) that is memory-optimized. A large memory
is crucial to obtain high performance for genomic data analysis
workloads. In addition, we add a 2TB SSD volume to this
machine so that the software can run with fast SSDs. For the
reads input data set, we use a well-characterized Illumina
sequencing result of patient NA12878 obtained from the
Broad Institute Public Dataset [8]. We use GRCh38 reference
genome [55] and dbSNP138 [41] SNP sites data set to construct
a reference table.

B. Evaluation Results

Performance. Figure 13(a) shows the speedup of three Genesis
accelerators designed to accelerate various stages of the
GATK4 data preprocessing phase, over the GATK4 software
implementations run on a carefully configured 8-core AWS EC2
R5 instance. For the mark duplicates stage, a single speedup
number is shown since the GATK4 pipeline does not divide
the data by chromosome until the sorting is completed, which
happens at the end of the mark duplicates stage. For metadata
update4 and base quality score recalibration stages, both per-
chromosome speedups and overall speedups are presented
(Figure 13(c) and (d)). Genesis achieves an overall speedup of
2× on mark duplicates stage, 19.3× on metadata update, and
12.6× on BQSR (covariate table construction). Considering
that these three stages take about three and a half hours for
a single genome to execute (assuming that metadata update
perfectly scales), Genesis reduces the computation time to
process a single person’s gene by roughly 140 minutes.
Runtime Breakdown. Figure 13(b) shows the breakdown of
the Genesis framework runtime for the three stages in the
GATK4 data preprocessing phase. Figure 13(a) shows that
mark duplicates achieves a lower speedup (approximately 2×)
than others since the un-accelerated software portion of the
stage (takes 99.35% of the runtime) works as a bottleneck
once the hardware achieves significant speedup. Metadata
update and BQSR speedups are partially limited by the host-
FPGA communication (takes 53.4% and 29.5% of the runtime
repectively as shown in Figure 13(b)) interface bandwidth.
On an AWS F1 instance, the host communicates to and from
the FPGA via a PCIe DMA interface, which is measured
at approximately 7 GB/s on our custom microbenchmark.
Considering that the next generation communication interfaces

4For metadata update stage, since the baseline implementation is single-
threaded, we conservatively assume that the baseline software implementation
perfectly scales for 8 cores.

53.4%
46.6%

29.5%
70.5%0.15%

0.5%

Fig. 13. Performance/Cost comparison of the Genesis accelerators over baseline for three GATK4 data preprocessing stages.

such as PCIe 4.0 [50] or CXL [17] will provide much higher
bandwidths and the DMA controller performance will improve
accordingly, the presented speedups for Metadata update
and BQSR can improve significantly (e.g., 33× and 16.4×
respectively when 32 GB/s PCIe 4.0 interface is assumed) with
such technologies.

The speedups from Genesis may seem lower than that
of other ASIC domain-specific accelerators targeting a very
specific, mostly compute-intensive algorithm and achieving
several orders of magnitude speedups. Unlike such accelerators,
our accelerators target data manipulation operations, whose
performance is often bottlenecked by limitations in the host and
FPGA communication interface, memory, or storage systems.
Furthermore, the relatively lower speedup on data manipulation
operation does not mean that this is less important. In fact, it
is quite the opposite since the importance of accelerating data
manipulation operations becomes greater when other compute-
intensive stages of the pipeline are significantly accelerated, as
shown in Section IV-A. More importantly, Genesis provides
this speedup with deployability and flexibility. While an FPGA
has significant drawbacks over ASICs in terms of performance,
energy consumption, and area, it has a notable advantage
in that it is much easier to deploy and adapt. Genesis adds
further programmability and productivity with its SQL-oriented
software interface and a composable accelerator construction
approach utilizing the Genesis hardware library.

Cost. Many genomic data processing workloads exhibit a
plethora of parallelism and thus often scale relatively well
with the increased amount of resources. In such a scenario, the
cost can be a more meaningful metric than the raw speedup
itself since it considers the amount of resources the system
utilizes. Table III compares the cost of running each accelerated
stage in the AWS cloud with the configurations in Table II.
Genesis reduces the cost of genomic data processing by up to
15× and achieves up to 290× better efficiency measured in
performance per dollar compared to the software-only baseline.

FPGA Resource Usage. Table IV shows the FPGA resource
consumption of the Genesis accelerators. Genesis accelerators
tend to under-utilize the FPGA resources since most of the
algorithm is communication/memory-bound once the number of

TABLE III
COST COMPARISON OF Genesis AND BASELINE SYSTEMS.

Stage Genesis
Cost

Reduction

Genesis
Speedup

Normalized
Performance/$

Mark Duplicates 2.08× 2.08× 4.31×
Metadata Update 15.05× 19.25× 289.59×

BQSR (Table Construction) 9.84× 12.59× 123.92×

TABLE IV
FPGA RESOURCE USAGE OF Genesis.

Type Used Available Utilization(%)
Mark Duplicates

CLB Lookup Tables 228K 895K 25.4%
CLB Registers 272K 1790K 15.2%

BRAMs 0.34MB 7.56MB 4.55%
Metadata Update

CLB Lookup Tables 333K 895K 37.19%
CLB Registers 424K 1790K 23.7%

BRAMs 4.95MB 7.56MB 65.5%
Base Quality Score Recalibration

CLB Lookup Tables 502K 895K 56.1%
CLB Registers 257K 1790K 14.4%

BRAMs 1.69MB 7.56MB 22.4%

pipelines in a system exceeds a certain threshold. This implies
that further improvement on the FPGA memory interface,
such as the adoption of HBM2 in recent Xilinx UltraScale+
FPGAs [64], can lead to further speedup. It is also possible
to exploit the under-utilized configuration and place multiple
Genesis accelerators targeting different operations in a single
FPGA so that users can time-multiplex the accelerators and
avoid reprogramming.

VI. RELATED WORK

Hardware Accelerators for Genomics. There is substantial
prior work focused on accelerating genome sequencing, sig-
nifying its importance. However, most prior work attempts
to accelerate a very specific algorithm, rather than common
generic operations. For example, many accelerators target
different types of alignment algorithms [12], [13], [21], [23],
[25], [26], [36], [58], pre-alignment filtering [2], variant
calling algorithms [6], [26], [38], or the INDEL alignment
algorithm [62]. These works achieve exceptional efficiency
with an architecture highly specialized to a specific algorithm,

which contrasts with our approach. We leverage higher-level
primitives (SQL and SQL extensions) to map a wider swath of
data manipulation operations in genomic data processing into
hardware. Further, once specific algorithms in the genomics
domain are accelerated, the time spent on the generic data
manipulation operations becomes much larger, which Genesis
can successfully accelerate.
Storing or Processing Genomics using DBMSs. Many exist-
ing frameworks, such as Gemini [49], GenAP [32], and many
others [31], [39], [52], [53], [61], conceptualize genomic data
as a database and use a DBMS and SQL-style query languages
to process data in a fast and efficient way in software. Our
work adopts the SQL query as a software interface and utilizes
specialized hardware to accelerate such database operations.
The popularity of database usage in genomic data processing
shows that Genesis’s front-end interface can be effectively
utilized to bridge the gap between the bioinformaticians and
the hardware designers.
Hardware Accelerators for Data-intensive Applications.
Our work is most closely related to LINQits [15], Q100 [63],
and SDA [48] in that those three works attempt to accelerate
database operations with the use of ASICs or FPGAs. For this
reason, our hardware library has partial overlap with some of
the hardware modules proposed in those frameworks. However,
in practice, it is often challenging, if not impossible, to utilize
such prior works to accelerate genomics data manipulation oper-
ations efficiently. For example, LINQits or SDA programming
model assumes a specific processing pattern, which is too naïve
to efficiently support the complicated dataflow patterns shown
in Figure 11 and 12. To support a complex processing pattern,
such approaches need to decompose a complex operation
into multiple smaller operations and use the main memory
for communication between operations, which is extremely
inefficient. Similarly, Q100 only utilizes scratchpad memory as
a stream buffer and thus cannot implement the dataflow pipeline
exploiting data reuse. In addition, such accelerators specialize
on a relatively small subset of the SQL operations (i.e., select,
sort, join, groupby), which are not sufficient to represent
genomics data manipulation operations that require other SQL
operations (such as PosExplode) or genomic data-specific
operation (such as ReadExplode). Mondrian data engine [19]
also aims to accelerate database operations exploiting the
specific characteristics of a near-memory processing archi-
tecture. Finally, Genesis draws inspirations from accelerators
focusing on efficient streaming data movements such as
DaNa [37], Imagine [1], [28], RSVP [16], Softbrain [44],
Graphicionado [24], and CoRAM++ [60], but exploits different
abstractions and targets completely different domains.
Proprietary Commercial Solutions. Illumina DRAGEN [20]
is an FPGA-based proprietary solution that accelerates the
genomic secondary analysis. Its pipeline is different from
GATK4; however, they recently started a collaboration with
Broad Institute and planned to release the co-developed GATK-
compatible pipeline in the second half of 2020 [10]. In addi-
tion, NVIDIA now provides the proprietary GPU-acceleration
solution for the GATK4-compatible pipeline [45] after its

acquisition of Parabricks in December 2019. DRAGEN claims a
30× end-to-end speedup over traditional CPU solution [20] and
NVIDIA Parabricks [45] claims a 48× end-to-end speedup over
a single 32-core CPU with 8 V100 GPUs. A direct comparison
with our proposal is difficult since DRAGEN utilizes a slightly
different pipeline and does not report the exact experimental
setup. Furthermore, most of DRAGEN’s and Parabricks’s end-
to-end speedup comes from large, computation-oriented stages
such as alignment or variant calling stages while Genesis
focuses on data manipulation stages. These industrial solutions
can provide high performance for the existing stages in the
pipeline, but their micro-architectures (DRAGEN) or GPU
optimization strategies (Parabricks) are not open to the public.
In addition, Genesis’s approach allows highly productive
accelerator development of new or modified algorithms thanks
to its composability.

VII. CONCLUSION

We propose Genesis, a flexible acceleration framework for
genomic data analysis. Genesis consists of a software interface
using SQL-style queries for data manipulation operations,
a genomic data processing hardware library, as well as an
accelerator management API. We demonstrate the deployability,
flexibility, and composability of Genesis by implementing
multiple GATK4 preprocessing stages. Genesis achieves notably
higher performance and cost efficiency than GATK4 software
running on a commodity Xeon CPU server. In addition,
Genesis allows bioinformaticians to expedite their research
analysis by leveraging domain-specific hardware platforms,
that are generally difficult to use, by providing an easy-to-use
programming interface based on an already widely-adopted
data analysis language, SQL.

ACKNOWLEDGMENT

We thank the reviewers for their insightful comments. This
work was supported in part by a National Research Foundation
of Korea research grant funded by the Ministry of Science and
ICT (PE Class Heterogeneous High Performance Computer
Development, NRF-2016M3C4A7952587). This work was also
funded in part by the Advanced Research Projects Agency-
Energy (ARPA-E), U.S. Department of Energy (under Award
Number DE-AR0000849), ADEPT Lab industrial sponsor Intel,
RISE Lab sponsor Amazon Web Services, and ADEPT Lab
affiliates Google, Siemens, and SK Hynix. The views and
opinions expressed here are solely those of the authors and do
not necessarily state or reflect those of the government or any
of the sponsors.

REFERENCES

[1] J. H. Ahn, W. J. Dally, W. J. Dally, B. Khailany, U. J. Kapasi, and
A. Das, “Evaluating the imagine stream architecture,” in Proceedings
of the 31st Annual International Symposium on Computer Architecture
(ISCA), 2004.

[2] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan,
“GateKeeper: a new hardware architecture for accelerating pre-alignment
in DNA short read mapping,” Bioinformatics, vol. 33, no. 21, pp. 3355–
3363, 2017.

[3] “Amazon EC2 F1 Instances,” https://aws.amazon.com/ec2/instance-types/
f1, Amazon.

[4] J. Andrews, “23andMe competitor Veritas Genetics slashes price of whole
genome sequencing 40% to $600,” https://www.cnbc.com/.

[5] “Spark SQL,” https://spark.apache.org/sql/, Apache Software Foundation.
[6] S. S. Banerjee, M. el-Hadedy, C. Y. Tan, Z. T. Kalbarczyk, S. Lumetta,

and R. K. Iyer, “On accelerating pair-HMM computations in pro-
grammable hardware,” in Proceedings of the 27th International Confer-
ence on Field Programmable Logic and Applications (FPL), 2017.

[7] “Broad Institute About Us: This is Broad,” https://www.broadinstitute.
org/about-us, Broad Institute.

[8] “Broad Institute Public Datasets Google Cloud Repository,”
https://console.cloud.google.com/storage/browser/broad-public-
datasets?project=broad-public-datasets&organizationId=548622027621,
Broad Institute.

[9] “GATK4 data preprocessing,” https://github.com/gatk-workflows/gatk4-
data-processing, Broad Institute.

[10] “Illumina and broad institute announce agreement to co-develop genomic
secondary analysis tools,” https://www.broadinstitute.org/news/illumina-
and-broad-institute-announce-agreement-co-develop-genomic-
secondary-analysis-tools, Broad Institute.

[11] Broad Institute GATK Dev Team, “Introduction to the GATK best
practices,” https://software.broadinstitute.org/gatk/best-practices/.

[12] M. F. Chang, Y. Chen, J. Cong, P. Huang, C. Kuo, and C. H. Yu, “The
smem seeding acceleration for dna sequence alignment,” in Proceedings
of the 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2016.

[13] Y.-T. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-throughput accel-
eration engine for read alignment,” in Proceedings of the 23rd Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2015.

[14] “Chisel hardware construction language,” https://chisel.eecs.berkeley.edu/.
[15] E. S. Chung, J. D. Davis, and J. Lee, “Linqits: Big data on little clients,”

in Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA), 2013.

[16] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette,
and A. Saidi, “The reconfigurable streaming vector processor (RSVP),”
in Proceedings of the 36th Annual International Symposium on Microar-
chitecture (MICRO), 2003.

[17] “Compute Express Link,” https://www.computeexpresslink.org/, CXL
Consortium.

[18] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire,
C. Hartl, A. A. Philippakis, G. del Angel, M. A. Rivas, M. Hanna,
A. McKenna, T. J. Fennell, A. M. Kernytsky, A. Y. Sivachenko, K. Cibul-
skis, S. B. Gabriel, D. Altshuler, and M. J. Daly, “A framework for
variation discovery and genotyping using next-generation dna sequencing
data,” Nature Genetics, vol. 43, 2011.

[19] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi,
B. Grot, and D. Penvmatikatos, “The mondrian data engine,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA), 2017.

[20] “Dragen bio-it processor,” http://www.edicogenome.com/dragen_bioit_
platform/, Edico Genome.

[21] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw,
and S. Narayanasamy, “GenAX: a genome sequencing accelerator,” in
Proceedings of the 45th Annual International Symposium on Computer
Architecture (ISCA), June 2018.

[22] E. Garrison and G. T. Marth, “Haplotype-based variant detection from
short-read sequencing,” ArXiv e-print arXiv:1207.3907, 2012.

[23] L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
fpga and gpu,” in Proceedings of the 27th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
2019.

[24] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics,” in Proceedings of the 49th Annual International
Symposium on Microarchitecture (MICRO), 2016.

[25] B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D. Chamberlain,
“A banded Smith-Waterman FPGA accelerator for Mercury BLASTP,”
in Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), 2007.

[26] S. Huang, G. J. Manikandan, A. Ramachandran, K. Rupnow, W. H. Wen-
mei, and D. Chen, “Hardware acceleration of the Pair-HMM algorithm
for DNA variant calling,” in Proceedings of the International Symposium
on Field-Programmable Gate Arrays (FPGA), 2017.

[27] “Illumina,” https://www.illumina.com/, Illumina.
[28] U. J. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany, “The

imagine stream processor,” in Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and Processors
(ICCD), 2002.

[29] K. I. Kendig, S. Baheti, M. A. Bockol, T. M. Drucker, S. N. Hart, J. R.
Heldenbrand, M. Hernaez, M. E. Hudson, M. T. Kalmbach, E. W. Klee,
N. R. Mattson, C. A. Ross, M. Taschuk, E. D. Wieben, M. Wiepert, D. E.
Wildman, and L. S. Mainzer, “Sentieon dnaseq variant calling workflow
demonstrates strong computational performance and accuracy,” Frontiers
in Genetics, vol. 10, p. 736, 2019.

[30] S. Kim, K. Scheffler, A. L. Halpern, M. A. Bekritsky, E. Noh, M. Källberg,
X. Chen, Y. Kim, D. Beyter, P. Krusche, and C. T. Saunders, “Strelka2:
fast and accurate calling of germline and somatic variants,” Nature
Methods, vol. 15, no. 8, pp. 591–594, 2018.

[31] C. Kozanitis, A. Heiberg, G. Varghese, and V. Bafna, “Using Genome
Query Language to uncover genetic variation,” Bioinformatics, vol. 30,
no. 1, pp. 1–8, 2013.

[32] C. Kozanitis and D. A. Patterson, “Genap: a distributed sql interface for
genomic data,” BMC bioinformatics, vol. 17, pp. 63–63, 2016.

[33] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody,
J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh et al., “Initial
sequencing and analysis of the human genome,” Nature, vol. 409, no.
6822, pp. 860–921, 2001.

[34] M. Lek, K. J. Karczewski, E. V. Minikel, K. E. Samocha, E. Banks,
T. Fennell, A. H. O’Donnell-Luria, J. S. Ware, A. J. Hill, B. B. Cummings
et al., “Analysis of protein-coding genetic variation in 60,706 humans,”
Nature, vol. 536, no. 7616, pp. 285–291, 2016.

[35] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioin-
formatics, vol. 34, no. 18, 2018.

[36] I. T. Li, W. Shum, and K. Truong, “160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array (FPGA),”
BMC bioinformatics, vol. 8, no. 1, p. 185, 2007.

[37] D. Mahajan, J. K. Kim, J. Sacks, A. Ardalan, A. Kumar, and H. Es-
maeilzadeh, “In-rdbms hardware acceleration of advanced analytics,”
Proceedings of the VLDB Endowment, vol. 11, no. 11, p. 1317–1331,
2018.

[38] G. J. Manikandan, S. Huang, K. Rupnow, W. W. Hwu, and D. Chen,
“Acceleration of the Pair-HMM algorithm for DNA variant calling,” in
Proceedings of the 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2016.

[39] M. Masseroli, P. Pinoli, F. Venco, A. Kaitoua, V. Jalili, F. Palluzzi,
H. Muller, and S. Ceri, “GenoMetric Query Language: a novel approach
to large-scale genomic data management,” Bioinformatics, vol. 31, no. 12,
pp. 1881–1888, 2015.

[40] P. Muir, S. Li, S. Lou, D. Wang, D. J. Spakowicz, L. Salichos, J. Zhang,
G. M. Weinstock, F. Isaacs, J. Rozowsky et al., “The real cost of
sequencing: Scaling computation to keep pace with data generation,”
Genome biology, vol. 17, no. 1, p. 53, 2016.

[41] “Human genome resources at NCBI,” https://www.ncbi.nlm.nih.gov/
genome/guide/human/, National Center for Biotechnology Information.

[42] “DNA sequencing costs,” http://www.genome.gov/sequencingcosts, Na-
tional Human Genome Research Institute.

[43] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson,
C. Yeksigian, J. Kottalam, A. Ahuja, J. Hammerbacher, M. Linderman,
M. Franklin, A. D. Joseph, and D. A. Patterson, “Rethinking data-
intensive science using scalable analytics systems,” in Proceedings of
the International Conference on Management of Data (SIGMOD), 2015.

[44] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-
dataflow acceleration,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA), 2017.

[45] “NVIDIA PARABRICKS,” https://developer.nvidia.com/nvidia-
parabricks, NVIDIA Corporation.

[46] “PL/SQL for developers,” https://www.oracle.com/database/technologies/
appdev/plsql.html, Oracle.

[47] “Database SQL Tuning Guide - SQL Processing,” https://docs.oracle.
com/database/121/TGSQL/tgsql_interp.htm#TGSQL94618, Oracle, 2020.

[48] J. Ouyang, W. Qu, Y. Wang, Y. Tu, J. Wang, and B. Jia, “SDA: Software-
defined accelerator for general-purpose big data analysis system,” in Hot
Chips: A Symposium on High Performance Chips, 2016.

[49] U. Paila, B. A. Chapman, R. Kirchner, and A. R. Quinlan, “Gemini:
Integrative exploration of genetic variation and genome annotations,”
PLOS Computational Biology, vol. 9, 2013.

[50] “PCI Express Specifications,” https://pcisig.com/specifications, PCI SIG.

[51] R. Poplin, P.-C. Chang, D. Alexander, S. Schwartz, T. Colthurst, A. Ku,
D. Newburger, J. Dijamco, N. Nguyen, P. T. Afshar, S. S. Gross,
L. Dorfman, C. Y. McLean, and M. A. DePristo, “A universal snp
and small-indel variant caller using deep neural networks,” Nature
Biotechnology, vol. 36, 2018.

[52] U. Röhm and J. A. Barkeley, “Data management for high-throughput
genomics,” in Proceedings of the Conference on Innovative Data Systems
Research (CIDR), 2009.

[53] M.-P. Schapranow and H. Plattner, “HIG – an in-memory database
platform enabling real-time analyses of genome data,” in Proceedings of
the IEEE International Conference on Big Data (IEEE Big Data), 2013.

[54] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J.
Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, “Big data:
Astronomical or genomical?” Public Library of Science (PLoS) Biology,
vol. 13, no. 7, p. e1002195, 2015.

[55] “Genome reference consortium human build 38,” https://www.ncbi.nlm.
nih.gov/grc, The Genome Reference Consortium.

[56] The White House Office of the Press Secretary, “Fact
sheet: President Obama’s Precision Medicine Initiative,”
https://obamawhitehouse.archives.gov/the-press-office/2015/01/30/fact-
sheet-president-obama-s-precision-medicine\\-initiative.

[57] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: A warehousing solution over a map-
reduce framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2,
pp. 1626–1629, 2009.

[58] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000x acceleration on long read assembly,”
in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2018.

[59] Y. Turakhia, S. D. Goenka, G. Bejerano, and W. J. Dally, “Darwin-wga: A
co-processor provides increased sensitivity in whole genome alignments
with high speedup,” in Proceedings of the International Symposium on
High-Performance Computer Architecture (HPCA), 2019.

[60] G. Weisz and J. C. Hoe, “CoRAM++: Supporting data-structure-specific
memory interfaces for FPGA computing,” in Proceedings of the 25th
International Conference on Field Programmable Logic and Applications
(FPL), 2015.

[61] M. Wiewiórka, A. Leśniewska, A. Szmurło, K. Stępień, M. Borowiak,
M. Okoniewski, and T. Gambin, “SeQuiLa: an elastic, fast and scalable
SQL-oriented solution for processing and querying genomic intervals,”
Bioinformatics, vol. 35, no. 12, pp. 2156–2158, 2018.

[62] L. Wu, D. Bruns-Smith, F. A. Nothaft, Q. Huang, S. Karandikar, J. Le,
A. Lin, H. Mao, B. Sweeney, K. Asanović, D. A. Patterson, and
A. D. Joseph, “FPGA accelerated INDEL realignment in the cloud,”
in Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), 2019.

[63] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: the
architecture and design of a database processing unit,” in Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[64] “Supercharge Your AI and Database Applications with Xilinx’s HBM-
Enabled UltraScale+ Devices Featuring Samsung HBM2,” https://www.
xilinx.com/support/documentation/white_papers/wp508-hbm2.pdf, Xil-
inx, 2019.

[65] C. K. Yung, G. Bourque, P. C. Boutros, K. El Emam, V. Ferretti, B. M.
Knoppers, B. O’Connor, B. F. Ouellette, C. Sahinalp, S. P. Shah et al.,
“ICGC in the cloud,” 2016.

