
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Practical Erase Suspension
for Modern Low-latency SSDs

Shine Kim, Seoul National University and Samsung Electronics;
Jonghyun Bae, Seoul National University; Hakbeom Jang, Sungkyunkwan University;

Wenjing Jin and Jeonghun Gong, Seoul National University; Seungyeon Lee,
Samsung Electronics; Tae Jun Ham and Jae W. Lee, Seoul National University

https://www.usenix.org/conference/atc19/presentation/kim-shine

Practical Erase Suspension for Modern Low-latency SSDs

Shine Kim†‡, Jonghyun Bae†, Hakbeom Jang*, Wenjing Jin†, Jeonghun Gong†

Seungyeon Lee‡, Tae Jun Ham†, Jae W. Lee†

†Seoul National University, *Sungkyunkwan University, ‡Samsung Electronics

Abstract
As NAND flash technology continues to scale, flash-based
SSDs have become key components in data-center servers.
One of the main design goals for data-center SSDs is low read
tail latency, which is crucial for interactive online services
as a single query can generate thousands of disk accesses.
Towards this goal, many prior works have focused on mini-
mizing the effect of garbage collection on read tail latency.
Such advances have made the other, less explored source of
long read tails, block erase operation, more important. Prior
work on erase suspension addresses this problem by allowing
a read operation to interrupt an ongoing erase operation, to
minimize its effect on read latency. Unfortunately, the erase
suspension technique attempts to suspend/resume an erase
pulse at an arbitrary point, which incurs additional hardware
cost for NAND peripherals and reduces the lifetime of the
device. Furthermore, we demonstrate this technique suffers a
write starvation problem, using a real, production-grade SSD.
To overcome these limitations, we propose alternative prac-
tical erase suspension mechanisms, leveraging the iterative
erase mechanism used in modern SSDs, to suspend/resume
erase operation at well-aligned safe points. The resulting de-
sign achieves a sub-200µs 99.999th percentile read tail latency
for 4KB random I/O workload at queue depth 16 (70% reads
and 30% writes). Furthermore, it reduces the read tail latency
by about 5× over the baseline for the two data-center work-
loads that we evaluated with.

1 Introduction

NAND flash-based SSDs offer superior throughput and av-
erage latency compared to those of hard disks and thus have
become the de-facto standard for storage devices. However,
SSDs have much greater performance variability than that
of hard disks [11]. While SSDs can achieve very low aver-
age read latency (e.g., under 15µs [5]), their tail latency (e.g.,
99.999th percentile) can be very long (e.g., over 10ms). Fig-
ure 1 demonstrates this issue with a real low-latency SSD.

One can mistakenly think that long tail read latency is a rare
event that affects very few requests. However, such tail latency
can play a considerable role in data-center computing because
a single query (e.g., web search) may require thousands of
disk reads across the data-center [2,7]. In such a case, a single
long-latency disk access can lead to an increase in the overall
query response time. Also, the chance of a query experiencing

10
100

1000
10000

100000

1% 5% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

95
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

M
ax

.

La
te

nc
y

(𝜇
s)

Figure 1: Read latency distribution of a PCIe 3×4 NVMe
low-latency SSD [5] running 4KB random reads (70%) and
writes (30%) workload with a queue depth of 16.

long disk tail latency is continuously increasing with the trend
of ever-increasing data size.

To avoid such performance degradation in a data-center
induced by SSD tail latency, minimizing the tail latency of
a read operation is very important. Naturally, this requires
tackling two significant sources of long read tails: garbage
collection (GC) and erase operations. Recent prior works
have already explored ways to minimize the effect of GC on
read tail latency [6, 14, 37]. Furthermore, production-level
low-latency SSDs — such as Samsung Z-SSD [38], which
we base our work on — have already minimized the effect of
GC on read operation [38] by allowing the user-initiated read
to be processed between operations in a GC (i.e., read and
program to copy valid pages from one block to another) [4,
20]. In contrast, much less attention has been paid to the
effect of erase operation on read tail latency, primarily because
erase latency is relatively small (e.g., 5ms) compared to the
effect of GC on tail latency (e.g., can exceed 100ms without
any optimization). However, with techniques minimizing this
effect, erase latency is now becoming the most dominant
component of read tail latency.

To control the effect of erase on tail latency, Wu et al. [35]
proposed an erase suspension technique, which suspends an
ongoing erase (and verify) pulse when a read request is issued
to the same flash die. After processing the read request, the
erase pulse resumes from the exact point at which it was
suspended. However, the commodity NAND flash business is
known to be extremely cost-sensitive, and this technique may
increase the cost of NAND peripherals to generate an erase
pulse of an arbitrary length and track the exact state of every
erase. Furthermore, it can cause a serious NAND reliability
problem and write starvation.

To address these limitations, we present practical erase
suspension schemes for modern low-latency SSDs. Instead

USENIX Association 2019 USENIX Annual Technical Conference 813

of suspending/resuming an erase pulse at an arbitrary point,
our work focuses on suspending/resuming the erase operation
at well-aligned safe points by either i) aborting an ongoing
erase operation immediately and resuming from the last safe
point or ii) deferring the suspension of erase operation until
the next safe point. Exploiting their trade-offs, we also intro-
duce a timeout-based switching mechanism between the two
mechanisms, to adapt to workload changes dynamically. This
scheme enables modern low-latency SSDs to offer extremely
low read tail latency on a wide range of workloads without
causing any NAND reliability problem or write starvation.

Our contributions are summarized as follows:

• We are the first to identify the problems of NAND re-
liability and write starvation in the existing erase sus-
pension scheme and demonstrate the latter on a real,
production-grade SSD.

• We propose two practical erase suspension mechanisms,
immediate erase suspension and deferred erase suspen-
sion. We also analyze the trade-offs between the two
mechanisms and introduce a timeout-based switching
policy between the two, to take the best of both as the
workload changes.

• We demonstrate a significant reduction in read tail la-
tency with the proposed erase suspension mechanisms
on various workloads including Aerospike Certification
Tool (ACT) [1] and TPC-C benchmark workloads [31].

2 Practical Erase Suspension

2.1 Motivation
To perform a NAND block erase, the incremental step pulse
erasing scheme is a standard feature in modern SSDs [18].
Instead of utilizing a single, very high voltage pulse (e.g., 14V)
for an erase, which has negative impact on NAND lifetime [12,
25, 29], this scheme performs an erase operation with several,
discrete pulses (typically 5 or fewer), and each pulse has
a higher nominal voltage than the previous one. Figure 2
illustrates this scheme. By verifying the set of erased cells
between erase pulses and by applying higher voltage pulses
to cells that are not erased yet, this scheme minimizes damage
on NAND cells [12]. A single erase pulse consists of the
following 3 stages: 1© voltage ramping stage in which the
erase pulse reaches the desired voltage, 2© erase execution
stage during which the voltage is stabilized and maintained,
and 3© voltage recovery stage in which the erase voltage is
reset for the erase-verify operation.

The erase suspension mechanism has been proposed to
provide tight read tail latency by suspending an ongoing erase
pulse at the arrival of a read request to be resumed later [35].
While effective in reducing read tail latency, this mechanism
poses several implementation challenges in terms of NAND

Time (ms)

Vo
lta

ge

: Erase pulse : Verify pulse

Arrival of read request
(a) (b) ① Voltage ramping

② Erase execution
③ Voltage recovery

An erase pulse① ③②

1 2 3 4 5

. . .

Figure 2: Incremental step pulse erase and practical erase
suspension mechanisms: (a) Immediate erase suspension (I-
ES) and (b) Deferred erase suspension (D-ES).

reliability and cost. First, an erase suspension adds to the
cost of an erase an extra pair of voltage recovery (3©) and
ramping (1©) stages for suspending and resuming the erase
pulse. These additional stresses caused by ramping up and
down the voltage degrade the endurance of NAND [12,25,29].
For example, a recent case study using sub-20nm TLC NAND
shows that the raw bit error rate (RBER) is increased by 14.4%
with only 1000 erase suspensions [26]. The increased RBER
leads to an increase in uncorrectable bit error rate (UBER)
even with error correction, to eventually reduce the lifetime
of SSD [3].

Another limitation of the existing erase suspension scheme
is that it requires the capability to suspend and resume an
erase pulse at an arbitrary point. This increases the cost for
NAND peripherals to generate a pulse of an arbitrary length,
track the exact state of each suspended erase, and recover the
peripheral state to resume. As NAND cells continue to scale
with the introduction of 3D NAND, NAND peripherals are be-
coming a scalability bottleneck to a greater extent [19,24,27].
Considering the extreme cost sensitivity of the commodity
NAND business, this is a significant drawback.

Instead, our erase suspension scheme allows erase suspen-
sion only at the beginning or the end of each erase step. When
a read request arrives while an erase pulse is still asserted, our
scheme asserts an erase suspension command that either i)
aborts the ongoing erase pulse and forfeits the current erase
step progress to serve the read request immediately (named
immediate erase suspension) or ii) finishes the ongoing erase
step and serves the read request (named deferred erase sus-
pension). The next subsections discuss each option in detail
and also present an adaptive switching scheme between our
two proposed mechanisms.

2.2 Immediate Erase Suspension (I-ES)

One way to serve an incoming read request during the erase
pulse is to immediately terminate the ongoing erase step and
to forfeit the progress (Figure 2(a)). Then, after serving the
read request(s), the erase operation can resume from the be-
ginning point of the current erase step. We call this scheme
Immediate Erase Suspension (I-ES) since it immediately can-
cels the ongoing erase step.

In effect, I-ES is a practical variant of the original erase
suspension [35] with the following two changes. To improve
NAND reliability, a verify pulse is applied before resum-
ing a suspended erase pulse, exploiting the incremental step

814 2019 USENIX Annual Technical Conference USENIX Association

10
100

1000
10000

100000

1% 5% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

95
%

99
%
99

.9%

99
.99

%

99
.99

9%Max
.

Baseline Erase Suspension I-ES

La
te

nc
y (
!s

) >10s

Figure 3: Write starvation experiment results. This workload
consists of two threads where one thread continuously gener-
ates 128KB read requests, while another thread continuously
generates 128KB write requests (QD 1 for both). Baseline and
I-ES use real low-latency SSD [5], and Erase Suspension [35]
uses an SSD simulator [33].

pulse erasing scheme in Section 2.1. As each NAND cell in a
NAND block has different erase timing, some NAND cells
get erased more quickly than others [12,25,26,29]. Therefore,
applying the same pulse to all NAND cells when resuming
the erase pulse results in over-erasure of some cells, which
puts unnecessary stress on already erased cells and harms
the reliability of NAND. A verify pulse, before resuming the
erase pulse, detects already erased cells to not inflict unneces-
sary stress on these cells in a NAND block. Furthermore, to
keep the cost of NAND peripherals low, a whole step pulse
is asserted at every resumption, instead of the remaining step
pulse time. To generate an erase pulse of an arbitrary length, a
variable-length pulse generator with fine-grained control must
be placed on a NAND device. However, today’s commodity
NAND does not provide such a mechanism. In contrast, I-ES
does not require such changes keeping the cost of NAND low.
Advantages and Disadvantages. Since the erase step is can-
celed immediately, the read command can always be guaran-
teed the highest priority. The read command does not experi-
ence any other delay caused by an erase operation except for
a fixed latency (e.g., ∼100µs) that tries to cancel the ongoing
erase pulse (3© in Figure 2).

However, this scheme is problematic. With the continuous
incoming read requests, an erase step may be repeatedly can-
celed, preventing write requests (which are dependent on the
erase requests) from completion. To confirm this behavior,
we modified the firmware of the real, production-grade low-
latency SSD [5] to implement this scheme. Figure 3 shows
the outcome of this experiment. As expected, a few write
operations cannot finish for a long time because the preceding
erase operation is continuously canceled by incoming read
requests. As a result, its tail latency keeps increasing until the
end of the workload.

The erase (and write) starvation problem occurs because
the latency of erase suspension/resuming operation is longer
than the incoming rate of read requests on the NAND chip. For
example, if the throughput of PCIe Gen 3×4 NVMe interface
is 3.2GB/s (i.e., the incoming read rate is 1.19µs/4KB) and the
erase suspension/resuming overhead is 100µs, it is possible
for a read request to arrive while the erase suspension/resump-

tion is happening. In such cases, the erase will immediately
suspend again without making any forward progress, and
thus the erase (and write) operation will starve. Note that the
same problem manifests with the original erase suspension
scheme [35], which differs from I-ES only for the duration
of the asserted pulse at resumption, as shown in Figure 3.
NVMe and PCIe specifications require the host to reset both
hardware and software at write starvation (i.e., user’s write
requests timeout) [23, 28], which adversely affects system
performance [22] and may eventually lead to a fatal system
failure if repeated.

2.3 Deferred Erase Suspension (D-ES)
Another way to serve an incoming read request during the
erase pulse is to let the read request wait until the current erase
step finishes (Figure 2(b)). After that, in lieu of proceeding to
the next erase step, the read request(s) is (are) served. Then,
the erase operation resumes and continues to the next erase
step. We call this Deferred Erase Suspension (D-ES) as it
defers erase suspension until the end of the current erase step.
Advantages and Disadvantages. This mechanism lets the
erase operation finish without incurring the write starvation
problem. By guaranteeing a single erase step to be performed
once the erase step is initiated, this mechanism guarantees
forward progress for the erase operation.

Although this mechanism does not incur erase (and write)
starvation, it can harm read tail latency by making read re-
quests wait until the end of the current erase step (i.e., 1ms in
our low-latency NAND). This scheme can also show worse
read latency for bursty reads as D-ES adds extra latency to
reads. However, such situations could be avoided by batching
backlogged erases after serving the bursty reads first. This is-
sue is addressed by T-ES, which switches adaptively between
I-ES and D-ES.

2.4 Timeout-based Erase Suspension (T-ES)
Timeout-based Erase Suspension Policy. If it is possible
to know the request pattern of an application a priori, one
should use I-ES when the application is expected to have a
phase with sparse read requests as in this case erase (and
write) starvation does not occur as an erase is likely to make
progress during the upcoming sparse read period. On the other
hand, if an application is expected to have a steady stream
of incoming read requests, the user should use D-ES as in
this case, employing I-ES leads to an exponential increase in
write tail latency (i.e., write starvation).

Unfortunately, in reality, it is not easy to predict future
I/O access patterns without profiling runs. Thus, we propose
a Timeout-based Erase Suspension (T-ES) scheme, which
performs I-ES until the erase operation is delayed for Nms. If
the erase operation is delayed for Nms (i.e., timeout happens),
this scheme switches to D-ES mode to avoid potential erase
(and write) starvation. Hopefully, this scheme finds a period
to perform an erase operation without being interrupted by a

USENIX Association 2019 USENIX Annual Technical Conference 815

Table 1: Parameters used to model our low-latency SSD [5].
PCIe Gen 3×4 Lane, 240GB, NVMe SSD Device

NAND Configurations 4 channels, 4 chips/channel, 1 die/chip

DRAM, Flash Speed Rate
1600MT/s, 1200MT/s

(MT/s: Mega Transfers per Second [9])
FTL Schemes Page Mapping, Preemptible GC [20]
Over-provisioning Ratio 7%

NAND Structure
128Gb die capacity, 8 planes per die,

683 blocks per plane, 768 pages per block, 4KB page
NAND Latency

Read: 3µs, Program: 100µs, Block Erase: 1ms per step (5 steps),
Erase Suspension Penalty: 100µs

Table 2: Throughput and average latency of low-latency SSD
prototype and MQSim running various I/O pattern workloads.

Low-Latency SSD / MQSim
Seq. read (256KB) 3300 / 3250 MiB/s
Seq. write (256KB) 2700 / 3100 MiB/s

Kilo I/O per seconds Average latency
Rnd. read (4KB, QD 1) 59 / 65 KIOPS 16.9 / 15.3µs
Rnd. write (4KB, QD 1) 61 / 66 KIOPS 16.4 / 15.2µs
Rnd. read (4KB, QD 32) 790 / 790 KIOPS 40.5 / 40.5µs
Rnd. write (4KB, QD 32) 61 / 66 KIOPS 524 / 484µs

read operation.
Choice of Erase Timeout Delay. T-ES covers a spectrum
of policies between I-ES and D-ES, controlled by the value
of N. If we set it to 0, this is equivalent to the base D-ES
scheme. In contrast, if we set it to infinite, this is equivalent
to I-ES scheme prone to erase (and write) starvation problem.
In general, choosing a higher value offers more chance to
provide better read tail latency by delaying an erase operation,
but this choice leads to an increase in maximum write tail
latency. On the other hand, choosing a smaller N makes it
behave more like a D-ES, which provides smaller maximum
write tail latency at the expense of an increased number of
reads experiencing erase latency. T-ES provides a knob for
the user to choose N based on her willingness to trade-off
the maximum write tail latency for potential improvement in
read tail latency. For example, if the user wants to achieve
sub-100ms write tail latency and the maximum write delay
occurring from a GC scheme (e.g., GC policy [6, 13–15, 17,
37], over-provisioning ratio [30]) is 35ms, the user should
set N to be 64ms so that the total maximum write latency
remains under 100ms. By default, we set N to 64ms for our
experiments.

3 Evaluation

3.1 Methodology

Evaluation Framework. Although we utilized a real, proto-
type low-latency SSD [5] with modified firmware to perform
some experiments (Figure 1 and Figure 3), it is not possible
to utilize the real device to evaluate our presented schemes
such as D-ES and T-ES since implementations of such policy
require an extension to the interface between the SSD con-
troller and NAND flash chips (e.g., new commands). For this

100

1000

10000

99.9% 99.99% 99.999% Max.

Baseline ES I-ES D-ES T-ES Ideal-ES

100

1000

10000

100000

99.9% 99.99% 99.999% Max.

(a) Read tail latency (b) Write tail latency

La
te

nc
y

(!
s)

Figure 4: Read/write tail latency on 4KB random reads (70%)
and writes (30%) workload.

reason, we use MQSim [33] for our experiments, which we
extend so that it can accurately model low-latency NAND
flash chips. In particular, we i) allow data cache manager and
FTL to use strict 8 plane program so that it can achieve higher
write throughput, ii) enable I/O scheduler to process the user
read request as the highest priority, and iii) modify NAND
flash controller and memory logic to model our practical erase
suspension mechanisms. Table 1 summarizes the parameters
used for our MQSim, while Table 2 compares the simulation
results against those of a real low-latency SSD [5] for vari-
ous I/O patterns as validation of the simulator. The average
read/write latency and throughput from the simulator demon-
strate only a 6% error on average (with 13% in the worst case)
compared to measurements from the real device.
Evaluated Configurations. Throughout this section, we
present evaluation results for the following configurations
across different benchmarks (i.e., random 4KB access,
ACT [1], and TPC-C [34]). Also, we use for all experiments
the steady state pre-condition [32] in which the space of an
SSD including the over-provisioning (OP) [30] area is full;
this pre-condition helps evaluate the latency behaviors that
can happen under the worst-case condition of read and write
requests. Section 2 discusses three practical erase suspension
mechanisms: I-ES, D-ES, and T-ES. We add the following
three configurations to our evaluation for comparison:

• Baseline: Erase operations do not get preempted by an
incoming read request.

• Erase Suspension (ES): The scheme can suspend and re-
sume an erase pulse from an arbitrary point as proposed
by Wu et al. [35].

• Ideal Erase Suspension (Ideal-ES): This scheme can sus-
pend and resume an erase operation from any arbitrary
point with zero erase suspension penalty.

3.2 Random Access Benchmark
Workload. We first evaluate our erase suspension policies
using a microbenchmark that generates a mixture of 4KB
random reads (70%) and writes (30%) at queue depth 16. We
utilize Flexible I/O Tester (FIO) [8] to generate such disk
access patterns. This workload is widely used to evaluate
an SSD’s latency performance [10, 38]. Figure 4 shows the
results of this experiment.
Read Tail Latency. In the baseline, when an erase happens,

816 2019 USENIX Annual Technical Conference USENIX Association

10

100

1000

10000

95% 99% 99.9%

Baseline ES I-ES D-ES T-ES Ideal-ES

10

100

1000

10000

95% 99% 99.9%
(b) Write tail latency(a) Read tail latency

La
te

nc
y

(!
s)

D
id

no

t
 fi

ni
sh

D
id

no

t
 fi

ni
sh

D
id

no

t
 fi

ni
sh

D
id

no

t
 fi

ni
sh

D
id

no

t
 fi

ni
sh

D
id

no

t
 fi

ni
sh

Figure 5: Read/Write tail latency on ACT workload (30×
workload multiplier).

Table 3: Performance and stress test results using ACT.
Baseline ES I-ES D-ES T-ES Ideal-ES

Stress 32× 22× 22× 30× 30× 32×
Performance 14× 22× 22× 30× 30× 32×

the subsequent read requests are simply delayed for the du-
ration of the remaining erase time (up to 5ms). As a result,
baseline policy shows around 5ms read tail latency. With
ES and I-ES such an erase operation is repeatedly aborted
by the incoming read requests. As a result, incoming read
requests do not experience an extra delay caused by the on-
going erase operation except for the 100µs latency required
for erase suspension/resumption. For this reason, both ES and
I-ES policies have very low read tail latency. Note that they
are prone to experience erase (and write) starvation as pointed
out in Section 2.2. However, it does not happen here because
this workload has a period when read requests are not sent out
for some time (i.e., all 16 outstanding requests in the queue
are write requests waiting for an erase to proceed). During
this period, erase operation successfully finishes. The read
tail latency of D-ES is around 1ms because it always lets the
ongoing erase step (not the whole erase) finish, making a read
request wait. T-ES behaves similarly to I-ES in this workload
as the timeout is rarely triggered.
Write Tail Latency. Baseline, ES, D-ES, and Ideal-ES have
a lower write tail latency because their erase operation is
finished in a relatively short period of time without canceling
an existing erase pulse. Notably, the write tail latency of the
baseline policy is the maximum GC latency (35ms) of our
model without erase suspension. On the other hand, both I-ES
and T-ES abort the erase multiple times, and thus delays write
operations significantly. As a result, they tend to have a longer
write tail latency.

3.3 Database Benchmark

Workload. ACT models the Aerospike database servers’ real-
time I/O access patterns. In essence, ACT consists of three
threads: one issuing 2K small (1.5KB) read requests per sec-
ond, another issuing 24 large (128KB) read requests per sec-
ond, and the third one issuing 24 large (128KB) write requests
per second. ACT gradually increases this rate in integer multi-
ples (e.g., ACT 4× workload means 8K small read requests/s,
96 large read requests/s, 96 large write requests/s) and consid-
ers that the device has passed the performance test if it meets
the following conditions for a long time (e.g., 24hrs): i) 95%
of transactions finish in 1ms, ii) 99% of transactions finish in

100

1000

10000

99.9% 99.99% 99.999% Max.

Baseline ES I-ES D-ES T-ES Ideal-ES

100

1000

10000

100000

99.9% 99.99% 99.999% Max.

La
te

nc
y

(!
s)

(a) Read tail latency (b) Write tail latency

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

D
id

 n
ot

 f
in

is
h

Figure 6: Read/Write tail latency on TPC-C.

8ms, iii) 99.9% of transactions finish in 64ms, and iv) aver-
age transaction time for each type of requests is smaller than
ACT workload’s I/O request period. If a device satisfies only
the fourth condition but fails to satisfy one of the first three
conditions, that device is said to pass the stress test but not
the performance test. The maximum ACT multiplier that an
SSD can satisfy is that particular SSD’s performance rating.
ACT Results. Table 3 shows the maximum multiplier in
which each configuration passed the performance and stress
tests. Figure 5 shows the tail latency of 95%, 99%, and 99.9%
accesses at 30× workload multiplier. As shown in Table 3,
the baseline has a good average response time and thus can
successfully run ACT with 32× multiplier. On the other hand,
it has the worst read tail latency since the part of erase la-
tency (up to 5ms) is exposed to read requests. This leads
to a relatively poor performance test result for the baseline.
ES and I-ES have good read tail latency behavior. However,
continuous read requests cause erase (and write) starvation,
which leads to a failure in the stress test (fourth condition) at
the workload multiplier whose value is above 22×. On the
other hand, both D-ES and T-ES demonstrate strong results
for both stress and performance tests. Both D-ES and T-ES
can maintain low read tail latency while avoiding erase (and
write) starvation.

3.4 Transaction Processing Benchmark

Workload. TPC-C [34] is a popular benchmark for online
transaction processing frameworks. We utilize a published
disk trace of the system running TPC-C from SNIA [31], to
evaluate our erase suspension mechanisms.
TPC-C Results. Figure 6 shows the results from this exper-
iment. The baseline policy generally observes a noticeably
higher read tail latency than the other schemes since latency
is exposed to many read requests queued behind the erase
operation. Neither ES or I-ES runs to completion as they suf-
fer from a severe erase (and write) starvation and cause the
simulator to exit prematurely after failing to serve many write
requests for a long time. As in the ACT workload, this is be-
cause continuous read requests prevent the completion of an
erase operation. Both T-ES and D-ES achieve much lower tail
latency than the baseline. In particular, both achieve around
1ms max tail latency, which indicates that a read request only
experiences about a single erase step delay at most.

The write tail latency of the baseline, D-ES, and Ideal-ES
is similar to each other. In contrast, ES and I-ES suffer write
starvation, and T-ES records the longest write tail latency. The

USENIX Association 2019 USENIX Annual Technical Conference 817

L
a

te
n

c
y
 (
!s

)

T-ES Timeout:

L
a

te
n

c
y
 (
!s

)

(a) Read Latency Distribution

(b) Average Read Latency

136 132 128
115

100 94

0

50

100

150

4ms 16ms 64ms 256ms 1024ms 4096ms

0

500

1000

70% 80% 90% 95% 99% 99.9% 99.99% 99.999% Max.

4ms 16ms 64ms 256ms 1024ms 4096ms

Figure 7: (a) Read latency distribution and (b) average read
latency with varying T-ES timeout values for TPC-C.

Table 4: Maximum write latency for TPC-C.
T-ES Timeout 4ms 16ms 64ms 256ms 1.02s 4.09s
Write Latency
(Maximum) 27ms 40ms 86ms 280ms 1.04s 4.1s

T-ES scheme delays erase (and following writes) for up to the
timeout value hoping to find a period in which it can perform
an erase without blocking reads. In this case, T-ES does not
find such a period and hence ends up triggering the D-ES
mechanism after delaying the write requests; as expected, the
maximum write latency converges within 90ms (i.e., the sum
of GC latency (24ms) and the T-ES timeout value (64ms)).

3.5 Sensitivity to T-ES Timeout Threshold (N)

If an erase operation is delayed for Nms, T-ES switches
from I-ES to D-ES to avoid erase (and hence write) starvation.
We perform a sensitivity study, using TPC-C with varying N
to provide an insight into the tradeoff with selection of this
parameter.

Figure 7(a) shows the read latency distribution with differ-
ent values of N from 4ms to 4096ms. At around the 80th per-
centile we start to observe a gradual transition of read latency
from more of I-ES (about 200µs) to D-ES (about 1ms). In-
creasing N generally i) lowers frequency of both high-latency
read (i.e., over-200µs) and ii) average read latency, but iii) in-
creases the maximum write latency. As N increases, T-ES has
a greater chance of running in I-ES mode to lower the chance
for a read request to experience a 1ms delay for finishing an
ongoing erase pulse. Fewer long-latency reads lead to a lower
average read latency as shown in Figure 7(b).

However, increasing N negatively affects the maximum
write latency. Table 4 summarizes the maximum write latency
with varying N. As discussed in Section 2.4, the maximum
write latency of T-ES is the sum of GC latency and the T-ES
timeout value. This is because GC operations, which need an
erase operation to produce a free block for user data write,
may be interfered while running in I-ES mode. Once T-ES
timeout is triggered, it switches to D-ES to allow GC oper-

ations to produce the free blocks to write user’s data. The
maximum GC latency of the TPC-C workload (with steady
state pre-condition) is 24ms. Thus, the measured maximum
write latency is not far off from the estimated value (i.e., GC
latency plus N).

4 Related Work

Garbage Collection Optimization. There are several prior
works on alleviating the effect of GC on tail latency [6, 13–
15, 17, 37]. While these optimizations can effectively reduce
the effect of coarse-grained GCs on read tail latency, they
do not address the effect of long erase operation on read tail
latency, which becomes more important with optimized GC.
Thus, these techniques are orthogonal or complementary to
our presented erase suspension schemes.
I/O Scheduling Optimization. Another way to optimize tail
latency is to schedule a read/write request in an intelligent
way [16, 20, 21, 36, 39, 40]. These proposals are effective
when there are multiple devices available. On the other hand,
our work focuses on tail latency reduction without requiring
multiple devices. Still, if multiple devices are available, our
technique can be applied jointly with these optimizations.

5 Conclusion

This paper introduces practical erase suspension mechanisms
to limit the impact of erase operation on long read tail la-
tency. Leveraging the iterative erase mechanism commonly
employed by today’s flash devices, the proposed mechanisms
minimize the impact of erase operation on read tail latency,
while requiring only minor extensions to the flash interface.
With the proposed erase suspension mechanisms, our proposal
enables flash-based SSDs to achieve very low read tail latency,
while avoiding erase (and write) starvation and endurance
degradation of NAND. For example, our results demonstrate
the feasibility of a sub-200µs 99.999th percentile read tail
latency for 4KB random access workloads, which is com-
petitive with an emerging non-flash NVM-based SSD [10].
This will harness the full potential of flash-based SSDs as the
primary storage platform for future data-centers that will be
required to run a variety of latency-sensitive online services.

Acknowledgments

We thank Sam H. Noh for shepherding this paper and the
anonymous reviewers for their feedback. We also thank Adel
Choi, Heesoo Kim, Donghyeon Kwon, and Daejoong Jung
for their support. This work was supported by Research Re-
settlement Fund for the new faculty of Seoul National Univer-
sity, a research grant from Samsung Electronics, and Institute
for Information & communications Technology Promotion
(IITP) grant funded by the Korea Government (MSIT) (No.
2014-0-00035, Research on High Performance and Scalable
Manycore OS). Jae W. Lee is the corresponding author.

818 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Aerospike Certification Tool. https://github.com/
aerospike/act.

[2] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The datacenter as a computer: an introduction to the
design of warehouse-scale machines. Synthesis lectures
on computer architecture, 8(3):Morgan & Claypool Pub-
lishers, 1–154, 2013.

[3] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch,
Adrian Cristal, Osman S. Unsal, and Ken Mai. Flash
correct-and-refresh: Retention-aware error management
for increased flash memory lifetime. In Proceedings of
the IEEE 30th International Conference on Computer
Design, ICCD’12, pages 94–101. IEEE, 2012.

[4] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time
garbage collection for flash-memory storage systems
of real-time embedded systems. ACM Trans. Embed.
Comput. Syst., 3(4):ACM, 837–863, November 2004.

[5] Wooseong Cheong, Chanho Yoon, Seonghoon Woo,
Kyuwook Han, Daehyun Kim, Chulseung Lee, Youra
Choi, Shine Kim, Dongku Kang, Geunyeong Yu, Jae-
hong Kim, Jaechun Park, Ki-Whan Song, Ki-Tae Park,
Sangyeun Cho, Hwaseok Oh, Daniel DG Lee, Jin-Hyeok
Choi, and Jaeheon Jeong. A flash memory controller for
15µs ultra-low-latency SSD using high-speed 3D NAND
flash with 3µs read time. In Proceedings of the IEEE
International Solid-State Circuits Conference, ISSCC
’18, pages 338–340. IEEE, 2018.

[6] Wonil Choi, Myoungsoo Jung, Mahmut Kandemir, and
Chita Das. Parallelizing garbage collection with I/O to
improve flash resource utilization. In Proceedings of
the 27th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’18, pages
243–254. ACM, 2018.

[7] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):ACM, 74–80, 2013.

[8] Flexible I/O Tester. https://github.com/axboe/
fio.

[9] Alan Freedman. MT/sec. The Computer Desktop En-
cyclopedia. https://www.computerlanguage.com/
results.php?definition=MT/sec.

[10] Frank T. Hady, Annie Foong, Bryan Veal, and Dan
Williams. Platform storage performance with 3D XPoint
technology. Proceedings of the IEEE, 105(9):IEEE,
1822–1833, 2017.

[11] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A. Chien, and

Haryadi S. Gunawi. The tail at store: A revelation from
millions of hours of disk and SSD deployments. In
Proceedings of the 14th USENIX Conference on File
and Storage Technologies, FAST ’16, pages 263–276.
USENIX Association, 2016.

[12] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee,
and Jihong Kim. Lifetime improvement of NAND flash-
based storage systems using dynamic program and erase
scaling. In Proceedings of the 12th USENIX Conference
on File and Storage Technologies, FAST ’14, pages 61–
74. USENIX Association, 2014.

[13] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah,
Joonhyuk Yoo, and Mahmut T. Kandemir. HIOS: A host
interface I/O scheduler for solid state disks. In Proceed-
ings of the 41st ACM/IEEE International Symposium
on Computer Architecture, ISCA ’14, pages 289–300.
ACM/IEEE, 2014.

[14] Wonkyung Kang, Dongkun Shin, and Sungjoo Yoo.
Reinforcement learning-assisted garbage collection to
mitigate long-tail latency in SSD. ACM Transactions
on Embedded Computing Systems, 16(5s):ACM, 134:1–
134:20, 2017.

[15] Wonkyung Kang and Sungjoo Yoo. Dynamic manage-
ment of key states for reinforcement learning-assisted
garbage collection to reduce long tail latency in SSD.
In Proceedings of the 55th Annual Design Automation
Conference, DAC ’18, pages 8:1–8:6. ACM, 2018.

[16] Bryan S. Kim, Hyun Suk Yang, and Sang Lyul Min. Au-
toSSD: an autonomic SSD architecture. In Proceedings
of the USENIX Annual Technical Conference, ATC’18,
pages 677–690. USENIX Association, 2018.

[17] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards
SLO complying SSDs through OPS isolation. In
Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST’15, pages 183–189.
USENIX Association, 2015.

[18] Dong Wook Lee, Sunghoon Cho, Byung Woo Kang,
Sukkwang Park, Byoungjun Park, Myoung Kwan Cho,
Kun-Ok Ahn, Ye Seok Yang, and Sung Wook Park. The
operation algorithm for improving the reliability of TLC
(triple level cell) NAND flash characteristics. In Pro-
ceedings of the 3rd IEEE International Memory Work-
shop, pages 1–2. IEEE, 2011.

[19] Jaeduk Lee, Jaehoon Jang, Junhee Lim, Yu Gyun Shin,
Kyupil Lee, and Eunseung Jung. A new ruler on the
storage market: 3D-nand flash for high-density memory
and its technology evolutions and challenges on the
future. In Proceeding of the 2016 IEEE International
Electron Devices Meeting (IEDM), pages 11.2.1–11.2.4,
Dec 2016.

USENIX Association 2019 USENIX Annual Technical Conference 819

https://github.com/aerospike/act
https://github.com/aerospike/act
https://github.com/axboe/fio
https://github.com/axboe/fio
https://www.computerlanguage.com/results.php?definition=MT/sec
https://www.computerlanguage.com/results.php?definition=MT/sec

[20] Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp
Oral, and Jongman Kim. Preemptible I/O scheduling of
garbage collection for solid state drives. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 32(2):IEEE, 247–260, 2013.

[21] Christopher R. Lumb, Arif Merchant, and Guillermo A.
Alvarez. Façade: virtual storage devices with perfor-
mance guarantees. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, FAST’03,
pages 131–144. USENIX Association, 2003.

[22] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD failures in datacenters: What? When? and Why?
In Proceedings of the 9th ACM International Systems
and Storage Conference, SYSTOR’16, pages 7:1–7:11.
ACM, 2016.

[23] NVM Express 1.3a. http://nvmexpress.org/.

[24] Krishna Parat and Chuck Dennison. A floating gate
based 3D NAND technology with CMOS under array.
In Proceeding of the 2015 IEEE International Electron
Devices Meeting (IEDM), pages 3.3.1–3.3.4, Dec 2015.

[25] Byoungjun Park, Sunghoon Cho, Milim Park, Sukkwang
Park, Yunbong Lee, Myoung Kwan Cho, Kun-Ok Ahn,
Gihyun Bae, and Sungwook Park. Challenges and limita-
tions of NAND flash memory devices based on floating
gates. In Proceeding of the 2012 IEEE International
Symposium on Circuits and Systems, pages 420–423,
2012.

[26] Jisung Park, Jaehoon Lee, Myungsuk Kim, Myungjun
Chun, and Jihong Kim. Reducing read latency fluctu-
ations of flash storage systems using preemptible pro-
grams and erases. In Proceedings of the 16th USENIX
Conference on File and Storage Technologies, Work-in-
Progress Reports (WiPs), FAST ’18. USENIX Associa-
tion, 2018.

[27] Sung-Kye Park. Technology scaling challenge and fu-
ture prospects of DRAM and NAND flash memory. In
Proceeding of the 2015 IEEE International Memory
Workshop (IMW), pages 1–4, May 2015.

[28] PCI Express 3.1. https://pcisig.com/
specifications/.

[29] C. Sandhya, Apoorva B. Oak, Nihit Chattar, Udayan
Ganguly, C. Olsen, S. M. Seutter, L. Date, R. Hung,
Juzer Vasi, and Souvik Mahapatra. Study of P/E cycling
endurance induced degradation in SANOS memories
under NAND (FN/FN) operation. IEEE Transactions
on Electron Devices, 57(7):1548–1558, July 2010.

[30] Kent Smith. Understainding SSD overprovisioning. In
Proceedings of the Flash Memory Summit (2012), Flash
Memory Summit’12, 2012.

[31] SNIA IOTTA repository. TPC-C traces. http://iotta.
snia.org/traces/131.

[32] SNIA Solid State Storage Performance Test Specifi-
cation. https://www.snia.org/sites/default/
files/HoEasen_SNIA_Solid_State_Storage_Per_
Test_1_0.pdf.

[33] Arash Tavakkol, Juan Gómez-Luna, Mohammad
Sadrosadati, Saugata Ghose, and Onur Mutlu. MQSim:
A framework for enabling realistic studies of modern
multi-queue SSD devices. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies,
FAST ’18, pages 49–66. USENIX Association, 2018.

[34] TPC-C benchmark. http://www.tpc.org/tpcc/.

[35] Guanying Wu and Xubin He. Reducing SSD read la-
tency via NAND flash program and erase suspension.
In Proceedings of the 10th USENIX Conference on File
and Storage Technologies, FAST’12, pages 117–123.
USENIX Association, 2012.

[36] Suzhen Wu, Weidong Zhu, Guixin Liu, Hong Jiang, and
Bo Mao. GC-aware request steering with improved
performance and reliability for SSD-based RAIDs. In
Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS’18, pages 296–
305. IEEE, 2018.

[37] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminatahan Sundararaman, Andrew A. Chien,
and Haryadi S. Gunawi. Tiny-tail flash: Near-perfect
elimination of garbage collection tail latencies in NAND
SSDs. In Proceedings of the 15th USENIX Conference
on File and Storage Technologies, FAST’17, pages 15–
28. USENIX Association, 2017.

[38] Samsung Z-SSD SZ985. https://www.samsung.
com/semiconductor/global.semi.static/
Brochure_Samsung_S-ZZD_SZ985_1804.pdf.

[39] Jianyong Zhang, Alma Riska, Anand Sivasubramaniam,
Qian Wang, and Erik Riedel. Storage performance vir-
tualization via throughput and latency control. In Pro-
ceedings of the 13th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOTS’05, pages 135–
142. IEEE, 2005.

[40] Quan Zhang, Dan Feng, Fang Wang, and Yanwen Xie.
An efficient, QoS-aware I/O scheduler for solid state
drive. In Proceedings of the 10th IEEE International
Conference on High Performance Computing and Com-
munications, HPCC’13, pages 1408–1415. IEEE, 2013.

820 2019 USENIX Annual Technical Conference USENIX Association

http://nvmexpress.org/
https://pcisig.com/specifications/
https://pcisig.com/specifications/
http://iotta.snia.org/traces/131
http://iotta.snia.org/traces/131
https://www.snia.org/sites/default/files/HoEasen_SNIA_Solid_State_Storage_Per_Test_1_0.pdf
https://www.snia.org/sites/default/files/HoEasen_SNIA_Solid_State_Storage_Per_Test_1_0.pdf
https://www.snia.org/sites/default/files/HoEasen_SNIA_Solid_State_Storage_Per_Test_1_0.pdf
http://www.tpc.org/tpcc/
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf

	Introduction
	Practical Erase Suspension
	Motivation
	Immediate Erase Suspension (I-ES)
	Deferred Erase Suspension (D-ES)
	Timeout-based Erase Suspension (T-ES)

	Evaluation
	Methodology
	Random Access Benchmark
	Database Benchmark
	Transaction Processing Benchmark
	Sensitivity to T-ES Timeout Threshold (N)

	Related Work
	Conclusion

