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Abstract—The self-attention mechanism is rapidly emerging
as one of the most important key primitives in neural net-
works (NNs) for its ability to identify the relations within
input entities. The self-attention-oriented NN models such as
Google Transformer and its variants have established the state-
of-the-art on a very wide range of natural language processing
tasks, and many other self-attention-oriented models are achiev-
ing competitive results in computer vision and recommender
systems as well. Unfortunately, despite its great benefits, the
self-attention mechanism is an expensive operation whose cost
increases quadratically with the number of input entities that
it processes, and thus accounts for a significant portion of the
inference runtime. Thus, this paper presents ELSA (Efficient
Lightweight Self-Attention), a hardware-software co-designed
solution to substantially reduce the runtime as well as energy
spent on the self-attention mechanism. Specifically, based on
the intuition that not all relations are equal, we devise a novel
approximation scheme that significantly reduces the amount of
computation by efficiently filtering out relations that are unlikely
to affect the final output. With the specialized hardware for this
approximate self-attention mechanism, ELSA achieves a geomean
speedup of 58.1× as well as over three orders of magnitude
improvements in energy efficiency compared to GPU on self-
attention computation in modern NN models while maintaining
less than 1% loss in the accuracy metric.

Index Terms—attention, hardware accelerator, neural network

I. INTRODUCTION

The attention mechanism is a relatively recently introduced
neural network primitive emerging as one of the most influential
ideas in the deep learning community. This mechanism allows
neural networks (NNs) to identify the information relevant to
the specific input and decide where to attend. For example,
this mechanism can be used to identify the portion of the
information that is relevant to the query from an extensive
collection of data (e.g., knowledgebase, image). One specific
case of the attention mechanism is the self-attention mecha-
nism, where the attention mechanism is used to identify the
relations among input data. Since its first introduction in the
seminal paper Attention Is All You Need [82] that presents
the Transformer NN architecture, the self-attention mechanism
has been widely used to lead the breakthroughs in the field of
natural language processing (NLP). Self-attention-oriented NLP
models from major AI companies such as Google BERT [18],
Facebook RoBERTa [52], OpenAI GPT2/3 [5], [64], NVIDIA
MegatronLM [71], and Microsoft Turing-NLG [70] established
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the state-of-the-art results for various NLP tasks. In addition to
natural language processing, the self-attention is widely used
for computer vision [3], [15], [61], [91] and recommendation
systems [20], [43], [73], [78], [94], [95] as well.

Despite its strong potential, the self-attention is a costly
operation. This operation identifies the relations among input
data, and thus it requires the amount of computation that
quadratically increases with the number of entities involved in
this operation. Due to this high cost, the self-attention accounts
for a substantial amount of time and energy consumption in
many self-attention-oriented NN models, which becomes a
limiting factor for deployment. For example, many existing
NLP models such as Google BERT limit the self-attention
to be applied for up to 512 tokens (e.g., words) to avoid the
excessive performance and energy overhead. When the input
text has more than 512 tokens, the input text needs to be
divided into multiple segments (each with up to 512 tokens),
and the self-attention is separately applied for each segment.
Unfortunately, such a scheme makes NLP models unable to
capture the relation between two tokens that do not belong to
the same segment.

Thus, we present a hardware-software co-designed solution
for efficient, lightweight self-attention, called ELSA. Like other
hardware accelerators, ELSA exploits hardware specialization
to improve the performance and energy efficiency over the
conventional hardware like GPU. However, rather than merely
porting a provided algorithm to the hardware, our work takes
a step further and proposes a novel approximate self-attention
scheme as well as a specialized hardware architecture for
it. Based on the intuition that irrelevant relations can be
effectively filtered out by computing approximate similarity,
ELSA substantially reduces computational waste in a self-
attention operation. Unlike conventional hardware such as
GPUs, which fails to benefit from the proposed approximation,
our specialized hardware directly translates this reduction
to further improve performance and energy efficiency. This
reduced cost of self-attention enables us to apply the self-
attention to larger data, which can uncover distant relations
within the data that today’s models cannot handle effectively.
In summary, our work makes the following contributions:
• We present a novel approximate self-attention scheme which

exploits approximate, hardware-friendly similarity computa-
tion to substantially reduce the amount of computation in
the self-attention operation during inference.

• We design ELSA, a specialized hardware accelerator that
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Fig. 1. Self-attention mechanism.

exploits opportunities for approximation and parallelism
in the self-attention operation to significantly improve its
performance and energy efficiency.

• We evaluate ELSA with multiple representative self-atten
tion-oriented neural network models to demonstrate that our
accelerator can achieve substantial performance and energy
efficiency gains over the conventional hardware.

II. BACKGROUND AND MOTIVATION

A. Self-Attention Mechanism

Computation. Self-attention is essentially an operation that
identifies the relations within the input entities, and Fig. 1
presents the required computations for it. For each input entity,
three different d-dimensional dense vector representations need
to be provided: query, key, and value. Assuming the input has
n entities, n vectors of d dimension are grouped to form the
query matrix (Q), the key matrix (K), and the value matrix
(V) each having n × d dimensions. Throughout the paper,
we call row vectors of these matrices as queries, keys, and
values, respectively. 1 The very first step of the self-attention
is similarity computation, which computes the dot product
similarity between each query vector and each key vector. For
this purpose, the query matrix is multiplied with the transposed
key matrix (QKT ). This results in n×n matrix (i.e., attention
score matrix S), where sij represents the similarity (i.e., dot
product) between the ith query and the jth key vector. Note that
some implementations often called scaled self-attention divide
the resulting matrix by a scalar constant. 2 The second step is
the softmax normalization for each row of the attention score
matrix (s′ij = esij/

∑
m e

sim ). 3 The final step computes the
output of this operation for each query vector by computing
the weighted sum of value matrix (V) rows utilizing the
corresponding normalized attention scores as weights. This
is equivalent to multiplying the matrix S′ to V (because
rowi(O) =

∑n
m=1 s

′
im · rowm(V )⇔ oij =

∑n
m=1 s

′
im · vmj).

The result of this is an output matrix (O) where ith row
represents the d-dimensional vector that represents the outcome
of the self-attention operation for the ith input entity.
Application-Level Description. Each input entity (e.g., a word
in a text) gets three different vector representations (query, key,
and value). Then, each entity uses its query representation
to find the set of other entities that are the most relevant to
the current entity. For this purpose, the dot product similarity
between the query representation (of the current entity) and the
key representation of other entities are computed, then softmax-
normalized. Since the softmax function is a differentiable
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Fig. 2. Portion of the runtime spent for the self-attention mechanism.

approximation of the argmax function, this step is effectively
selecting a few most similar entities to the current entity. Finally,
the value representations of the selected entries are summed up
utilizing the softmax-normalized attention score as the weights.
This process is repeated for each input entity, and the output
is passed to the next layer in a NN model. In NLP models,
this operation is used to identify the specific semantic relation
between tokens (e.g., words). For example, a self-attention
head (i.e., sub-layer) in a layer lets the direct objects to attend
their verbs, or noun modifiers to attend their nouns [14].

B. Cost of Self-Attention Mechanism
As explained before, the self-attention mechanism consists

of three steps. The first matrix multiplication requires n2d
multiply-and-accumulate (MAC) operations (since it multiplies
n × d matrix with d × n matrix). The second softmax
operation requires n2 exponent operations, and the final matrix
multiplication also requires n2d MAC operations (n×n matrix
is multiplied with n× d).

Fig. 2 shows the portion of the runtime spent on self-attention
in popular NN models. We run SQuADv1.1 dataset [68] for
NLP models (BERT, RoBERTa, ALBERT) and MovieLens-
1M [33] for recommendation models (SASRec, BERT4Rec)
on NVIDIA V100 GPU [56]. The details of each workload are
available in Section V-A. The left side of the figure shows that
the self-attention accounts for a significant portion (about 38%)
of the runtime across many existing self-attention-oriented NN
models. Furthermore, the figure also shows that increasing n
further than the published model parameter, say, by 4×, makes
the self-attention to account for the even larger portion (about
64%) of the model runtime. Finally, note that several recent
research works on NLP models suggest that the portion of the
self-attention is going to increase even further. For example, a
recent research [88] demonstrates that extraneous dimensions
in the feedforward layers are unnecessary and removing them
hardly affects the model accuracy while significantly reducing
the runtime of the feedforward layers in Transformer-style
models. The right side of the figure shows that the runtime
portion of the self-attention on these models reach about 73%
when the feedforward layer dimension is reduced by 4× [88].
In addition, several recent proposals also investigate the idea
of replacing the feedforward layer in Transformer-style models
with the self-attention [48], [76]) for better model accuracy.
Such trends will make the self-attention to take an even larger
portion of the total model runtime in the future.
C. Opportunities for Approximation

All three input matrices (Q, K, V) of the self-attention
are dense. In other words, they mostly consist of nonzero
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Fig. 3. Visualization of sign random projection (SRP)

elements. However, not all elements of these matrices contribute
equally to the output. This is because the softmax operation
maps most of the values in the attention score matrix (S) to
zeros or near-zero values except for the few largest values
of the row. It effectively makes S′ a sparse matrix with
many near-zero values, and hence the final matrix S′V as
well. Simply performing the sparse matrix multiplication for
the second matrix multiplication (S′V) does not completely
mitigate the high cost of the self-attention, since the first matrix
multiplication QKT still requires n2d multiplications. To fully
exploit the approximation potential in the self-attention, there
should be a way to identify the set of keys (for each query)
that will result in large attention scores, without performing
expensive n2d multiplications.

Our intuition is that it is possible to achieve this by perform-
ing an approximate and lightweight similarity computation.
Instead of performing d multiplications and the softmax
operation to identify whether the ith query and the jth key
will be relevant or not (i.e., if s′ij will be near-zero or not),
an approximate similarity can be computed to quickly filter
out a key that is expected to be not very relevant to the query.
If this approximate similarity computation indicates that they
are potentially relevant, the exact dot product similarity is
computed. If not, this similarity computation and all subsequent
computations can be skipped. With this scheme, it is possible
to eliminate a large amount of computational waste, and
our specialized hardware can translate this reduction into
performance improvement as well as energy savings.

III. APPROXIMATE SELF-ATTENTION

A. Overview

Our approximate self-attention scheme consists of three
sub-operations. First, we estimate the angle between two
vectors (e.g., a key and a query) with minimal computation
by utilizing the concise representations (e.g., k-bits hash,
also called binary embedding) of the key and the query
(Section III-B, Section III-C). Second, an estimated angle is
utilized to compute the approximate similarity between a query
and a key (Section III-D), based on the intuition that dot product
is directly proportional to the cosine of the angle between two
vectors. Finally, the approximate similarity is compared with a
certain threshold (Section III-E) to identify whether a specific
key is relevant to the query or not.

B. Binary Hashing for Angular Distance

Sign Random Projection. Sign random projection (SRP) [7]
is a well-known technique that effectively maps each input
vector to a binary hash vector in a way that allows the original
angular distance between two vectors to be efficiently estimated

with the two corresponding binary hash vectors. This mapping
is often utilized for the locality-sensitive hashing schemes, but
our work focuses on its use as an efficient estimator for the
angular distance.

For this process, a random d-dimensional vector v is
initialized by setting each of its component to a value sampled
from normal distribution N(0, 1). Then, for an input vector x,
the hash bit value of 1 is assigned if v · x ≥ 0 and assigned 0
otherwise. This is repeated for k times with k random vectors
v1, ...vk to construct k-bits binary hash h(x) for the input
vector x. Formally, the hash function is defined as follows.

h(x) = (hv1(x), hv2(x), ...hvk(x)) where hv(x) = sign(v ·x)

Here, sign(x) is a function whose value is 1 if x ≥ 0 and
0 otherwise. It is proven that the Hamming distance between
hashes of the vector x and y (i.e., hamming(h(x), h(y))) is
an unbiased estimator of their angular distance [7]. Intuitively,
if two vectors are on the same side for many of the random
hyperplanes each defined by one of k random vectors v1, ...vk,
they are more likely to have a smaller angle. For example,
Fig. 3 shows that x1 and x2 is on the same side of three
random hyperplanes out of four, and thus have a small hamming
distance as well as angular distance. The following equation
is used to estimate the angle between vector x and y [7].

θx,y ≈
π

k
· hamming(h(x), h(y))

Our work, in fact, employs the slight variant of SRP that
utilizes the k orthogonal vectors generated with the modified
Gram-Schmidt Process [86]. Utilizing the orthogonal vectors
prevents two or more random vectors from pointing to a similar
direction, which leads to the unnecessary emphasis on that
specific direction. This method is proven to reduce the error
of the angular distance approximation [40].
Angle Correction. The estimated angle computed from the
hamming distance is not biased, but still has errors. For
this reason, if we simply utilize this estimator without any
correction, the estimated angles will be larger than the true
angle in about half of the cases. Since overestimating the
angle (i.e., underestimating the similarity between two vectors)
can result in our scheme to miss the keys that have relations
with the query, we subtract the bias θbias to this estimator.
Specifically, we set θbias to be the 80th percentile error of this
estimator so that subtracting this bias from the angle makes
this estimator underestimate angles in 80% of the cases. The
80th percentile error is obtained by experiments on a synthetic
dataset with standard random normal vectors. For a specific
case d = 64 and k = 64, θbias is 0.127.

C. Efficient Hash Computation

Cost of Hash Computation. To obtain the k-bits hash value
for a d-dimensional vector x, a k × d orthogonal matrix (i.e.,
a matrix whose row vectors are unit vectors orthogonal to
each other) is multiplied to x, and then each element is
assigned a hash bit (i.e., 1 if it is positive; 0 if not). With
this scheme, computing the hash values for n vectors requires



ndk multiplications (as well as n(d−1)k additions), and since
our scheme requires computing hashes for all queries and
keys, the total number of multiplications required for hash
computation is 2ndk. This cost is negligible compared to 2n2d
(cost of dot product similarity computation and value matrix
computation) when n� k. However, at least for current neural
networks with the limited n (e.g., 128 for small models), this
is not always the case. To minimize the amount of computation
for hash computation, our work exploits Kronecker product,
a technique to efficiently compute the matrix multiplication
using orthogonal matrices [22], [93].

Kronecker Product. The key intuition of our approach is
that we can utilize a structured orthogonal matrix for hash
computation. Specifically, we utilize an orthogonal matrix
which can be computed by the Kronecker product of smaller
matrices. A Kronecker product of a m×n matrix A and p× q
matrix B produces the pm× qn matrix as shown below.

Kronecker Product: A⊗B =


a11B . . . a1nB

...
. . .

...
am1B . . . amnB


It is well known that Kronecker product of orthogonal

matrices results in an orthogonal matrix. Thus, it is possible to
obtain the k×d orthogonal matrix through Kronecker products
of smaller orthogonal matrices. This characteristic allows us to
utilize the technique [22], [93] to efficiently compute the hash
value of the vector x, which is obtained by computing Ax.

Ax = (A1 ⊗A2)x = (A1x.reshape(8,8)A
T
2 ).reshape(64)

Efficient Computation with Kronecker Product. Fig. 5
visualizes an example case of computing matrix Ax with much
fewer computations for a 4×4 matrix A, which is represented as
Kronecker product of two 2×2 matrices A1 and A2. Similarly,
the above equation shows the case for k = d = 64 where the
64× 64 matrix A is represented as Kronecker product of two
matrices. Here, x.reshape(8,8) represents the operation of
reshaping 64-dimensional vector x to a 8×8 matrix by dividing
the vector by 8 slices and stacking them. With this technique,
the amount of multiplications involved in this operation is now
reduced to 1024 (i.e., 2d3/2) from 4096 (i.e., d2).

Ax = (A1 ⊗A2 ⊗A3)x
= (A2(x.reshape(4,4,4)A

T
3 )
T (0,2)AT

1 )
T (0,2).reshape(64)

Similarly, the technique can be applied to obtain orthogonal
matrix A by computing Kronecker product of three smaller
4 × 4 matrices A1,A2,A3 using the above equation. Here,
T (0, 2) means the tensor transpose which maps element with
index (i, j, k) to (k, j, i). With this scheme, three batched (with
batch size = 4) 4× 4 multiplications are required to compute
Ax. In other words, this requires a total of twelve 4×4 matrix
multiplications which involves 768 (i.e., 3d4/3) multiplications.
Note that the explained efficient computation mechanism also
works for cases where k 6= d or A is not a square matrix [93].

D. Approximate Self-attention Algorithm

Fig. 4 illustrates our approximate self-attention algorithm.
Below, we explain each sub-operation of the approximate self-
attention algorithm in detail.
Preprocessing. 0 At the beginning, k-bits hash values for
keys (Section III-B) are computed with the efficient hash
computation scheme (Section III-C). At the same time, the norm
of each key is computed and stored as well. This preprocessing
requires 3nd4/3 multiplications for the hash computation and
nd multiplications as well as n square root computations for
the norm computation. Note that it is possible to compute query
hashes during this phase. However, for now, we assume that
the query hash is computed when that query is processed so
that it matches well with the hardware architecture explained
in the next section.
Approximate Similarity Computation. Once the preprocess-
ing ends, the approximate dot product similarity between
a query and each key needs to be computed to determine
whether they are relevant or not. For a query (Qx) and each
key (Ky ∈ {K1, ...Kn}), the following computations are
performed. 1 First, the query hash value h(Qx) is obtained
using the efficient computation scheme in Section III-C. 2

Second, the Hamming distances between a query hash and
all keys are computed. 3 Third, these Hamming distances
are translated to angles θQx,Ky for all 1 ≤ y ≤ n using the
equation in Section III-B, and the θbias is applied. 4 Fourth,
the cosine function is applied to each of these approximate
angles, and then 5 the corresponding key norm is multiplied
to each of them. Note that the resulting value is the estimate
of the dot product between the normalized query and the key,
which represents the (query-normalized) similarity of those
two vectors. The following equations illustrate this relation.

Sim(Qx/‖Qx‖,Ky) = (Qx/‖Qx‖) ·Ky = ‖Ky‖ cos(θQx,Ky
)

≈ ‖Ky‖ cos
(
max(0,

π

k
· hamming(h(Qx), h(Ky))− θbias)

)
6 Finally, once the above values are computed, we inspect

these values and compare them with a constant threshold
to determine whether these values are relevant to the query
or not. The method to determine this threshold is explained
in the next subsection. 7 At this point, the candidates for
the current query have been selected, and the next query is
processed (starting from step 1 ). Each approximate similarity
computation between a key and a query involves i) single
Hamming distance computation, ii) a multiplication (πk ) and
a subtraction (θbias), iii) a cosine function, iv) and another
multiplication (‖Ky‖). This cost is substantially lower than
d multiplications required to compute the exact dot-product
similarity. Furthermore, Section IV-C shows we can avoid some
of these computations in hardware using a lookup table.

E. Candidate Selection Threshold

Motivation. There can be several different ways to filter out
irrelevant keys for a particular query based on the approximate
similarity. One possible way is to sort the score and select a
certain number of top-scoring elements. However, sorting has
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nlogn time complexity and is difficult to efficiently implement
in hardware, especially when n is large. For these reasons,
our work focuses on filtering out potentially irrelevant keys
by comparing those keys’ approximate (query-normalized)
similarities with a pre-defined threshold. One major issue is
that different layers and sub-layers utilizing the self-attention
often require different thresholds since each (sub-)layer often
exhibits a different distribution of attention scores. However,
it is impractical to leave these layer-specific threshold values
as user-defined hyperparameters, especially for models like
BERT-large which has 384 sub-layers utilizing the self-attention
mechanism. To avoid such an impracticality, we let a user
specify a single hyperparameter that represents the degree
of approximation, and present a scheme that automatically
finds the (sub-)layer-specific thresholds that correspond to the
user-specified degree of approximation.
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Fig. 6. Process of identifying layer-specific thresholds.

Learning Layer-Specific Thresholds. To find the layer-
specific threshold, our scheme runs target neural network model
inference on the training set and inspects the characteristics
of each layer utilizing the self-attention. Fig. 6 illustrates
this process. First, for each invocation of the self-attention
operation for a particular (sub-)layer, our scheme inspects the
softmax-normalized attention scores for each query. Then, 1

we identify the set of keys whose softmax-normalized attention
score exceeds p · 1n where p is a user-specified hyperparameter,
and n is the number of input entities. Here, the hyperparameter
p represents the degree of approximation. For example, if p = 2
when n = 200, this means that the user considers entities
whose softmax-normalized score exceeding 0.01 to be relevant.
The selection of a larger p implies aggressive approximation,
and a smaller p means conservative approximation. 2 Among

those keys, we focus on the key with the minimum softmax-
normalized attention score1. 3 Then, we normalize its original
attention score by dividing it with the query norm ‖q‖ and
the maximum key norm ‖Kmax‖ = max(‖K1‖, ..., ‖Kn‖).
We denote the resulting value as the threshold t. This process
is repeated for multiple input data in training set to find the
average of this value for each (sub-)layer. During an actual
inference run, the threshold t multiplied by the maximum key
norm (t ·‖Kmax‖) is compared with the approximate similarity
(Section III-D) to determine whether a key (in the key matrix
K) is relevant to the current query. Specifically, the following
equation specifies the condition to determine if the computation
for the key Ky can be skipped for the query Qx.

t · ‖Kmax‖ ≥ ‖Ky‖ · cos
(
max(0,

π

k
· hamming(h(Qx), h(Ky))− θbias)

)

IV. ELSA HARDWARE ARCHITECTURE

A. Motivation

Hardware specialization is a well-known approach to im-
proving performance and energy efficiency of a specific type
of computation. Naturally, this idea can be applied to the self-
attention operation, which accounts for a substantial portion of
total execution time in many emerging NN models of today.
However, we also emphasize more important, often overlooked,
benefits of building specialized hardware–exposing unique
optimization opportunities for the specific operation that cannot
be exploited profitably by the conventional hardware.

We make this point with the proposed approximation
algorithm as an example. As explained in Section III-D, the key
idea of ELSA approximate attention is to avoid d-dimensional
dot product through a hamming distance computation between
binary embeddings, multiplication, and a cosine function.
Unfortunately, the conventional GPU is not suited for many
of these operations, and our internal experiments have found
that the approximation scheme results in a 3.14× slowdown
because simply performing d-dimensional dot product is
faster than performing the approximate similarity computation,
even with various manual/automated optimizations for CUDA
implementation (e.g., TorchScript Tracing [62]). We find that
the true benefits of the proposed approximation scheme can be
harnessed only by a specialized hardware that is co-designed
with this approximation algorithm. This is where a software-
hardware co-optimization uncovers the unique opportunity that
pure hardware or software-only optimizations fail to exploit.

1Note that there exists a case where all softmax-normalized attention scores
are below p · 1/n (this can happen when p > 1). In such a case, we simply
take the maximum score among all keys.
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Fig. 7. ELSA Pipeline Block Diagram

B. Hardware Overview

For the efficient processing of the self-attention operation,
we design a specialized hardware accelerator that exploits the
novel approximation scheme introduced in Section III. One
can view the ELSA accelerator as a specialized functional
unit for the self-attention mechanism, which can be integrated
with various computing devices such as CPUs, GPUs, and
other NN accelerators. The host device can issue a simple
command to initiate the ELSA accelerator and pass the inputs
(i.e., key/query/value matrix and n). When a device with
scratchpad memories such as GPUs or NN accelerators is used,
matrix inputs (and output buffer) can be passed by reference
so that the accelerator can directly read those inputs without
making another copy. Once inputs are ready, the accelerator
goes through the preprocessing/execution phase and then writes
the output matrix to the output memory and notifies the host.
Operation Overview. Fig. 7 shows the block diagram of
the ELSA accelerator pipeline, which also presents its high-
level dataflow. The ELSA accelerator takes a key matrix, a
query matrix, and a value matrix as inputs for self-attention to
generate the output matrix. As soon as inputs are ready, the
preprocessing phase begins. This phase computes k-bits hash
values of each row in the key matrix using a hash computation
module, and stores them in the key hash memory. Similarly, the
norm of each key vector is computed using a norm computation
module and stored in the key norm memory. Once this phase
ends, the execution phase begins where each row of the query
matrix is processed in sequence to output a single row of
the output matrix at a time. Specifically, for each query, Pc
candidate selection modules retrieve Pc keys’ hashes and norms
(along with the query hash) every cycle and outputs up to Pc
selected candidate key IDs (i.e., row IDs) to each module’s
output queue. Then, these selected key IDs are arbitrated and
passed to the attention computation module, which computes
and accumulates the selected key’s contribution to the output
(for the current query) every cycle. Once all selected keys for
this particular query is computed, the output division module
performs the division on this output. This process is repeated
for each row of the query matrix (i.e., each query), and the
operation ends when the last query is processed.

C. Design of Hardware Modules

(1) Modules for Approximate Self-attention Computation

Candidate Selection Module. The candidate selection module
performs the approximate self-attention mechanism (Section III)

to identify the set of potentially relevant rows in the key matrix
(i.e., candidates), and then outputs the indices of such elements
to the attention computation module. Every cycle, this module
takes three inputs: i) k-bits hash value of a key from the
key hash memory and ii) the norm of this key from the key
norm memory, and iii) k-bits hash value of the current query
from the query hash buffer. Then, this module utilizes k-bits
XOR unit followed by an adder to compute the Hamming
distance between the key hash value and the query hash value.
The resulting Hamming distance value is then used as an
index to access the pre-populated lookup table, which stores
cos(π/k·dHamming−θbias). Since the Hamming distance takes
an integer value between zero and k, this lookup table has k+1
entries. Once this value is retrieved, it is multiplied with the
norm of the current key to compute the approximate similarity
(Section III-D). This value is compared with the product of
threshold t (Section III-E) and the largest vector norm of the
key matrix (i.e., t ·max(‖K1‖, ..., ‖Kn‖)). If the approximate
similarity is greater than this value, the key in question is
selected as a potentially relevant key, and the index of this
key is then passed to this module’s output queue. Multiple
(i.e., Pc) candidate selection modules process different keys in
parallel, and then their outputs are arbitrated and passed to the
attention computation module. The candidate selection module
is fully-pipelined and processes one key per cycle.

1 def attention_computation (float q[], float key[][],
2 float val[][], vector<int> candidates):
3 for keyid in candidates:
4 /* Dot-Product*/
5 parallel for i = 0 to d-1:
6 temp[i] = key[keyid][i] * q[i]
7 score = ParallelSum(temp)
8 /* Exponent Computation */
9 score = exp(score)
10 sumexp += score
11 /* Weighted Sum */
12 parallel for i = 0 to d-1:
13 output[i] += score * val[keyid][i]
14 def output_division (float output[], float sumexp):
15 reciprocal = 1/sumexp
16 /* Division */
17 for i = 0 to d/mo-1:
18 parallel for j = 0 to mo-1:
19 output[i * mo + j] *= reciprocal

Fig. 8. Pseudocode for Attention computation and output division modules.

Attention Computation Module. A single attention computa-
tion module is in charge of computing a single row of the final
output matrix, along with the output division module. Fig. 8
represents this module’s operation in pseudocode. Each cycle,
this module takes a key as an input from the arbiter with the
longest-queue-first scheduling policy. Then, it first computes



the dot product between a key (Ky) and a query (Qx) using its
d multipliers and an adder tree (Line 5-7 in Fig. 8). After that,
for the softmax normalization of the resulting attention score,
the exponent of this value is computed using a lookup table
(explained in Section IV-E). The resulting exponentiated value
is i) accumulated in the sum of exponent register (Line 10), and
ii) multiplied with all components of the corresponding value
matrix row using the other set of d multipliers and accumulated
with d adders (Line 12-13). This module is fully-pipelined
and can process a single candidate every cycle. Assuming c
candidates are selected for the query Qx by the candidate
selection modules, this module can process them in about c
cycles. The resulting output vector and the sum of exponentiated
values are then passed to the output division module when it
finishes processing all selected keys for the current query.
Output Division Module. Once all (selected) keys are pro-
cessed, all components of the output vector needs to be
divided by the accumulated exponentiated score to complete
the softmax normalization. For this purpose, the hardware
first utilizes a reciprocal unit (explained in Section IV-E) to
compute the reciprocal of the sum of the exponentiated score
(Line 15), and then multiply each component of the output
vector with mo multipliers (Line 18-19). Since this module is
fully-pipelined, it can handle a single query every d/mo cycles.
Note that this module operates in parallel with the rest of the
pipeline (e.g., candidate selection and attention computation
modules). However, when other modules are processing the
ith query, this module is processing the i− 1th query.

(2) Modules for Key/Query Hash & Norm Computation

Hash Computation Module. This module is in charge of
computing hashes for the keys and the queries by performing
a series of matrix multiplications as described in Section III-C.
Specifically, if we assume the specific case presented in Sec-
tion III-C (i.e., utilizing three-way Kronecker products of 4×4
matrices for k = d = 64), the hash computation for a vector
requires a total of twelve (4× 4, 4× 4) matrix multiplications
(the last paragraph in Section III-C). Assuming mh multipliers
for this unit, we carefully design the matrix multiplication
unit so that it fully utilizes all mh multipliers to perform
this operation and complete the hash computation in 768/mh

(i.e., 3d4/3/mh) cycles. For these matrix multiplications, this
module contains 48 (3d2/3) registers, where each register value
is an element of three pre-defined (4 × 4) matrices for the
hash computation (i.e., A1, A2, A3 in Section III-C). Once
the matrix multiplications are finished, the sign bits of each
component (a total of k-bits) are concatenated and stored in
the key hash memory. During the preprocessing phase, this
module computes all key hashes (768n/mh or 3nd4/3/mh

cycles) and the first query hash (extra 768/mh or 3d4/3/mh

cycles). During the execution phase, this model computes the
hash value for the next query while the rest of the pipeline
(e.g., candidate selection and attention computation module) is
processing the current query.
Norm Computation Module. Norms of the keys are computed
during the preprocessing phase in addition to the hashes of

the keys. The euclidean (L2) norm of the key vector ‖Ky‖ is
obtained by computing the dot product with itself (Ky ·Ky) and
then taking its square root. For this purpose, instead of having
its own set of multipliers, this unit utilizes the d multipliers
and the adder tree in the attention computation module (as
shown in Fig. 7). Then, this module utilizes its own square
root units (see Section IV-E for details) to compute the final
result and store it in the key norm memory. In addition, this
module also identifies the maximum key norm and multiply
the trained t by that value to compute the threshold that is
used for the candidate selection modules.

(3) Memory Modules

Key Hash/Norm Memory. These memory modules are imple-
mented as SRAM structures placed within the ELSA accelerator.
These structures are initialized during the preprocessing phase
and then utilized by the candidate selection module during the
execution phase. Key Hash SRAM requires a total of nk/8
bytes storage, and Key Norm SRAM requires a total of n bytes
assuming an 8-bit representation for the norm. In n = 512 and
k = 64 configuration, the key hash SRAM requires 4KB, and
the key norm SRAM requires 512 bytes.
Query/Key/Value/Output Matrix Memory. These matrices
are inputs (Query, Key, Value) and output of the self-attention.
They can be placed within the ELSA accelerator using the
SRAM structures. However, since the ELSA accelerator is
expected to be utilized in conjunction with a host device such
as GPUs or other neural network accelerators targeting other
parts of the neural network models, it is also possible to utilize
scratchpad memory structures in those devices (e.g., GPU
shared memory) to store these matrices. At n = 512 and
d = 64, each of these matrices requires about 36KB storage
space assuming 9-bits representation (including the sign bit).

D. Pipeline Design
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Fig. 9. ELSA accelerator pipeline during the execution phase.

Pipeline Configuration. For a given n and d, this pipeline
takes 3d4/3(n+ 1)/mh cycles for the preprocessing. Figure 9
shows the high-level view of the pipeline during the execution
phase and lists each hardware module’s latency to process a
single query (also explained in Section IV-C). As illustrated in
the figure, four hardware modules can potentially bottleneck
the pipeline. It takes max(3d4/3/mh, n/Pc, c, d/mo) to
process a single query when c is the number of candidates
selected by candidate selection modules. To avoid introducing
the bottleneck and maximize the throughput, one should
carefully select Pc, mh, mo to properly balance the pipeline.
Specifically, it is ideal to configure parameters in a way
that modules other than the attention computation module
(takes c cycles) do not become a pipeline bottleneck. For



example, if one aims to design a pipeline that can achieve up
to 8× speedup (i.e., it takes n/8 or more cycles to process
a query) with approximation, each of 3d4/3/mh, n/Pc, and
d/mo should be less than or equal to n/8. When d is 64, a
configuration such as Pc = 8, mh = 64, mo = 8 satisfies
this requirement as long as n ≥ 96. With this configuration,
the achieved speedup is min(n/c, 8). That is, the speedup is
often (i.e., c ≥ n/8) determined by the effectiveness of the
approximation scheme, which reduces the number of keys to
process (i.e., c) for the attention computation module.
Parallel Pipeline. We extend the pipeline so that ELSA can
utilize multiple attention computation modules in parallel by
exploiting the fact that each row of the key/value matrix can
be processed independently. To extend the pipeline to utilize
Pa attention computation modules in parallel, the key matrix,
the value matrix, and the key hash/norm need to be stored in
a banked on-chip memory where each bank contains n/Pa
keys, values, and key hashes/norms. Then, for each bank, Pc
candidate selection modules and a single attention computation
module are connected so that they process the set of keys
(and values) within a single bank and compute the partial
sum of the output as well as the exponentiated score. At the
end of each query, such partial sums are passed to the output
division module, which sums up these values using an adder
tree (requires an extra set of (Pa−1)·mo adders) and computes
the final output. To avoid a specific stage of the pipeline or the
specific phase from forming a bottleneck, pipeline configuration
parameters such as mh (# of multipliers in hash computation
module) and mo (# of multipliers in output division module)
may need to be adjusted. This is because the throughput of
candidate selection modules and attention computation modules
are increased by Pa× compared to the ones shown in Fig. 9.
We find that mh = 256 and mo = 16 work well for Pa = 4.
For further throughput, the whole ELSA accelerators (including
its memory elements) can be replicated to exploit batch-level
parallelism as well (e.g., our evaluation utilizes a set of twelve
ELSA accelerators to exploit batch-level parallelism).

E. Design Details

Number Representation. The elements of key, query, value
matrix are represented in a fixed-point form with a single sign
bit, five integer bits, and three fraction bits. The elements of
predefined matrices for the hash computation are represented
with a fixed-point form with a single sign bit and five fraction
bits. The rest of the pipeline utilizes the minimal necessary
integer bitwidth to avoid the overflow while maintaining
the number of fraction bits. We use custom floating-point
representations (e.g., a single sign bit, ten exponent bits, and
five fraction bits) to represent the output of the exponent
function as well as following computations on it to cover
their huge value range. We empirically verified that the use of
these number representations has a negligible impact (<0.2%)
on model evaluation metric loss across various models when
compared to the FP32 baseline.
Choice of n and d. n represents the maximum number of
input entities for the self-attention. For a model running very

small NLP micro-benchmarks like GLUE [83], a small n
(e.g., 128) is sufficient. For longer text such as question-
answering benchmarks [47], [68], a larger n (e.g., 512) is
often utilized to capture the relation between distant tokens.
An even larger n (e.g., 800, 1024) is utilized for tasks like
text summarization [51], and text generation [64], [71]. For
evaluation, we configure the hardware to fit the largest workload
we run, which has n = 512. We utilize d = 64, which all our
evaluated models originally used. ELSA accelerator can be
designed for any n or d, and once synthesized, it can efficiently
run with any model or input that has smaller n or d.
Choice of Hash Length k. In general, higher k results in the
better approximation since the estimate for the angle between
two vectors becomes more accurate. However, too large k
increases i) the cost of hash computation, ii) key hash storage
area, and iii) area/power of the candidate selection modules.
For such reasons, we find that k = d is a choice that works
well as long as k is not too small (e.g., less than 16). In case
where k > d, batches of orthogonal vectors are utilized to
generate k hash bits [40]. Since all our evaluated workloads
use d = 64, we set k = 64 as well.
Hyperparameter Tuning. Our main hyperparameter p (Sec-
tion III-E) determines the degree of approximation. We rec-
ommend the user to tune this parameter with the validation
dataset so that the model maintains a user’s desirable accuracy
while improving the performance and energy efficiency. Note
that this tuning process is simple since p is a hyperparameter
that (almost) monotonously increases accuracy as its value
decreases. Finally, a user can set p to 0 to easily fall back to
the exact version when the highest accuracy is desired.
Special Functional Units. The exponential computation unit
computes ex by utilizing the fact that ex = 2(log2 e)x =
2frac((log2 e)x) · 2floor((log2 e)x). For 2frac((log2 e)x), it utilizes 32-
entry lookup table where fractional exponents of 2 are stored.
For the reciprocal unit, a simple lookup table with 32-entry is
used to obtain the reciprocal of a floating point with 5 fraction
bits. For the square root unit, a Taylor-expansion-oriented
scheme named tabulate and multiply [36], [81] is utilized.

V. EVALUATION

A. Workloads

We evaluate several representative self-attention-oriented
NN models to demonstrate the effectiveness of the ELSA.
For natural language processing models, we select three of
the most popular ones: Google BERT (large) [18], Facebook
RoBERTa (large) [52], and Google ALBERT (large) [49]. We
utilize open-source implementations of those models from
HuggingFace [87] (BERT, RoBERTa), FairSeq [57] (RoBERTa),
and Google ALBERT repository [24] (ALBERT). For all three
NLP models, we run Stanford Question Answering Dataset
(SQuAD) [68] 1.1 & 2.0, and RACE dataset [47], which is a
large-scale reading comprehension dataset from examinations.
For RoBERTa, we additionally run IMDB review sentiment
analysis dataset [54]. In addition to these NLP models, we
also evaluate ELSA with self-attention-oriented sequential
recommendation models such as SASRec (3-layers model) [43]
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and BERT4Rec (3-layers, 2-head model) [78] with MovieLens
1M dataset [33].

B. Accuracy Evaluation

Methodology. We extend the self-attention layer in each
NN model with our approximation scheme and measure the
model’s end-to-end accuracy metric (i.e., F1 score for SQuAD,
raw accuracy for RACE/IMDB, and NDCG@10 [85] for
recommendation models) on the test set or the validation set
(for the workloads whose test set is not publicly available).
For conciseness, we simply refer to these metrics as accuracy
throughout this section. We plan to open-source our software
implementation integrated with PyTorch and TensorFlow.
Impact of Approximation. Fig. 10 shows the impact of
approximation on end-to-end model accuracy (lines) as well
as the portion of selected candidates2 (bars) across a varying
degree of approximation hyperparameter p. In general, the
small p implies conservative approximation with a relatively
small accuracy degradation, while the larger p implies more
aggressive approximation. For most of the model-workloads
combinations, it is possible to achieve sub-1% accuracy loss by
only inspecting less than 40% of the total entities as candidates
(i.e., p = 1). Furthermore, the figure also shows that it is
possible to achieve sub-2% accuracy loss by inspecting about
26% of the total entities on average (p = 2). As discussed in
Section IV-E, the user can experiment with the train set or the
validation set to determine the degree of approximation (p)
that provides a reasonable accuracy loss.

C. Performance Evaluation

Methodology. For performance evaluation, we implement a
custom simulator for ELSA that is integrated with the Py-
Torch/Tensorflow implementations of the NN models. For GPU
performance evaluation, we utilize a system with the six-core
Intel Xeon Gold CPU [35] and the Nvidia V100 GPU [56] with

2Many software implementations operate with the fixed size n (e.g., 512). If
the input text has fewer than n tokens, the software implementation pads the
input so that it gets n tokens. We exclude such paddings for the normalization,
and the figure shows the portion of selected candidates among the real tokens.

16GB memory. For each workload, the batch size achieving the
best throughput is selected. For ELSA performance evaluation,
we use a set of twelve ELSA accelerators, each running at 1Ghz
and configured as follows: Pa = 4, Pc = 8, mh = 256, and
mo = 16. We specifically evaluate twelve ELSA accelerators
so that their peak throughput (= 1.088 TOPS/accelerator × 12
≈ 13 TOPS) approximately matches with the Nvidia V100
GPU having 14 TFLOPS peak throughput (with FP323).

We select p for each NLP model-workload combination
whose worst-case accuracy loss is bounded by 1%, 2.5%,
5% to call them ELSA-conservative, moderate, aggressive,
respectively. For recommendation models, 0.5%, 1.0%, 2.0%
drop in NDCG@10 metric is used to determine p for those
configurations. We also evaluate ELSA-base configuration with
no approximation. Finally, we compare ELSA configurations
with an ideal accelerator, which can sustain 100% peak FP
throughput at 1GHz frequency, while having the same number
(i.e., 528) of multipliers with the ELSA-base accelerator. This
is effectively an upper-bound of performance for the other
matrix multiplication accelerators without approximation.
Throughput. Fig. 11(a) presents the throughput of the self-
attention across different platforms. The figure shows that
a set of ELSA-base accelerators achieve substantially better
throughput (i.e., 7.99-43.93×) than the GPU, indicating that
its specialized architecture can effectively accelerate the self-
attention operation. Overall, the speedup of the ELSA-base
over GPU varies across workloads and models. Variations
across workloads are mostly attributable to the actual number
of input entities. There are some inputs where the data has
fewer entities than the maximum number of entities the model
supports (i.e., n). In such cases, the GPU implementations
pad the data and perform the matrix multiplications with n
rows. However, ELSA accelerators (and the ideal accelerator)

3Nvidia GPUs can achieve better raw inference throughput by utilizing the
FP16 format accelerated with the tensor core. However, its iso-peak-FLOPS
throughput will be lower in this case since the actual throughput increase from
FP16 inference is often much lower than 8× increase in peak throughput.
Thus, using FP32 throughput gives an advantage to GPU in calculating the
normalized throughput.



avoid computation for the padded rows and achieve higher
speedup. Speedup differences across NLP models for the same
dataset are mostly due to the GPU performance differences
across different models and implementations. The figure also
demonstrates that the conservative, moderate, and aggressive
approximation scheme enables ELSA to achieve much higher
geomean speedups over GPU (57×, 73×, 81×, respectively)
than the ELSA-base accelerator. We find that moderate or
aggressive approximation performance is sometimes bounded
by the pipeline bottleneck caused by the candidate selection
modules. Adjusting pipeline configuration parameters such as
Pc (Section IV-D) will result in extra speedups in these cases
at the expense of extra area/power.
Latency. Fig. 11(b) compares the average latency of performing
a single self-attention operation on various models across ELSA
accelerators and the ideal accelerator. As shown in the figure,
ELSA-base latency is nearly identical (1.03×) to the ideal
accelerator. ELSA with the approximation scheme achieves
latency reduction over the ideal accelerator by exploiting the ap-
proximation opportunities. The average (geomean) normalized
latency of ELSA-conservative, ELSA-moderate, and ELSA-
aggressive are 0.38×, 0.29×, 0.26× of the ideal accelerator
latency. Fig. 11(b) also shows that all workloads spend a small
amount of time on preprocessing. If a further reduction in
preprocessing time is desired, one can increase the mh or use
multiple hash computation modules.
Impact on End-to-End Performance. Figure 11 compares
the throughput and latency for the self-attention mechanism
(not the end-to-end model throughput or latency). As shown in
Figure 2, the portion of the time spent on self-attention varies
greatly across models, sequence length (i.e., input length),
and the model configuration (e.g., FFN dimension). With
ELSA-conservative’s 57× average speedup, the use of ELSA
accelerators makes the time spent on self-attention to be
negligible compared to the time spent on the other operations.
The ELSA-conservative accelerators achieve about 1.4-2.5×
end-to-end speedup across five models when the default max
input length is utilized, and 2.4-5.0× speedup when the 4×
larger input length is utilized. Furthermore, if other types of
accelerators are utilized to accelerate the rest of the network
(e.g., FC layers), the end-to-end speedup from the use of ELSA
accelerators becomes even larger, since the portion of the time
spent on the self-attention layer becomes larger.

D. Area/Energy Evaluation

Methodology. For area and energy evaluation, we imple-
ment the ELSA accelerator with Chisel hardware description
language [12], and perform functional verification. Then,
we synthesize, place and route the Chisel-generated Verilog
code with the 1GHz target frequency using Synopsys Design
Compiler [80] and TSMC 40nm standard cell library. For logic
synthesis, we assume the following pipeline configuration:
n = 512, d = 64, Pa = 4, Pc = 8, mh = 256, mo = 16.
Area. Table I reports the ELSA accelerator area characteristics
and Fig. 12 shows the layout of the ELSA accelerator. As shown
in the table, the single ELSA accelerator utilizes about 1.3mm2

Key Memory

Output Division

Hash Computation

Candidate Selection

Attention
Computation

Query Memory

Value Memory

Output Memory

Key Hash Memory Key Norm Memory

Fig. 12. Post-layout image of the ELSA accelerator.

area (2.1mm2 with external memory modules), and twelve
ELSA accelerators utilize about 15.1mm2 area (25.8mm2 with
external memory modules). On the other hand, Nvidia V100
GPU has a total die size of 815mm2 [55]. This implies that
integrating the ELSA accelerator to GPU incurs a very little
area cost, and such a cost becomes even lower considering that
the reported ELSA area is estimated from the 40nm technology
node, while the Nvidia V100 GPU die area is from the 12nm
technology node. Another important point from the area table is
that candidate selection modules (32 copies) utilize a relatively
little area. This proves that our approximation mechanism is
very hardware-friendly.
Power and Energy Consumption. Table I shows that a single
ELSA accelerator consumes about 1.49W (including power
consumption from the external memory modules) and twelve
ELSA accelerators consume about 17.93W at its peak. This
is substantially lower than that of the Nvidia V100 GPU,
which has 250W thermal design power (TDP). Furthermore, we
measured the actual GPU power consumption with nvidia-smi
tool and confirmed that the GPU is in fact operating at the power
level very close to its peak (e.g., 240W+) while performing the
self-attention operation in our workloads. Fig. 13(a) presents
the energy efficiency comparison of the ELSA accelerators
and the GPU. Combining the power efficiency (over 13×) and
the speedup (shown in Fig. 11), the ELSA-base accelerator
achieves over two orders of magnitude improvements in energy
efficiency (geomean: 442×) over the GPU for the self-attention
computation. Moreover, approximation-enabled configurations
further increase the energy efficiency improvements: 1265×
(conservative), 1726× (moderate), and 2093× (aggressive).
Finally, Fig. 13(b) shows the energy consumption breakdown of
the ELSA accelerators. The figure shows that our approximation
scheme, despite the introduction of new hardware modules,
results in the total energy reduction by significantly reducing
the energy spent on attention computation and output division
modules and external memory modules.

E. Discussion

Comparison with the A3 accelerator. A3 [30] is a recent
proposal that also applies approximation to the attention.
However, A3 architecture has the following key limitations
that make it not well-suited for the self-attention. First, its
approximation scheme requires an expensive preprocessing
(i.e., sorting all columns of the key matrix). Its preprocessing
relies on external hardware (e.g., GPU) that incurs significant
performance/energy overheads. Unfortunately, when multiple
attention accelerators are used in parallel, the preprocessing
time linearly increases while the execution time linearly
decreases, to make this preprocessing take the dominating
portion of the runtime. Also, storing the outcome of the
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TABLE I
AREA AND (PEAK) POWER CHARACTERISTICS OF ELSA.

Module Name Area
(mm2)

Dynamic
Pwr(mW)

Static
Pwr(mW)

Modules for Approximate Self-attention
Hash Computation (mh = 256) 0.202 115.08 2.23

Norm Computation 0.006 9.91 0.07
32× Candidate Selection 0.180 78.41 1.95

Modules for Attention Computation
4× Attention Computation 0.666 566.42 7.53
Output Division (mo = 16) 0.022 11.42 0.19

Internal Memory Modules
Key Hash Memory (4KB) 0.141 139.91 1.05

Key Norm Memory (512B) 0.038 34.9 0.29
External On-Chip Memory Modules

Key/Value Mem. (36KB ea.) 0.253 167.39 2.29
Query/Output Mem. (36KB ea.) 0.193 91.03 1.72

ELSA Accelerator
ELSA Accelerator (1×) 1.255 956.05 13.31

External Memory Modules (1×) 0.892 516.84 8.02
ELSA Accelerators (12×) 15.06 11472.6 159.72

External Memory Modules(12×) 10.704 6202.08 96.24

preprocessing requires a memory that is twice larger than the
original key matrix. Second, the A3’s approximation scheme
is complex (occupying over 1.7× larger area than ELSA’s
attention computation module) and has a very low degree
of parallelism. A3’s approximation scheme can only select
up to two keys (and often fewer) every cycle and is not
further parallelizable. This significantly limits its ability to
achieve the desired accuracy on time and prevents the use
of multiple attention computation modules in parallel. For
example, A3 evaluation results state that it achieves a 1.85×
speedup over its baseline accelerator without the approximation
on the BERT model running the SQuADv1.1 dataset at the
expense of 1.3% accuracy loss. On the other hand, for a similar
setting, ELSA-conservative/moderate configurations achieve
2.76×/3.72× speedup over the ELSA-base without approxi-
mation with lower than 1%/2.5% accuracy loss. Considering
this difference in baseline configurations, ELSA approximate
configurations achieve 5.96×/8.04× better raw speedup over
the A3 approximation configuration. Finally, ELSA presents
a more scalable, area-efficient attention computation module
design that does not require multiple n-element buffers.

Comparison with Google TPU. Google Tensor Processing
Unit (TPU) [23] is specialized hardware that targets neural
network training as well as inference tasks. To check its
effectiveness in self-attention operation, we run ALBERT
model [49] that natively supports TPU execution on Google
Cloud TPUv2. Our experimental results show that ELSA-
base achieves 8.3×, 6.4×, 2.4× better (peak-FLOPS-nor

malized) throughput4 on self-attention operations of ALBERT
running SQuADv1.1/2, and RACE datasets. For the same
workloads, ELSA-moderate achieves 27.8×, 20.9×, 8.0×
speedup, respectively. For the references, the measured TPU
(peak-FLOPS-normalized) throughput was 5.5×, 6.7×, and
5.4× better than GPU throughput for the same workloads.
NN Models with Lightweight Self-Attention. Several recent
works propose changes in the NNs to reduce the computational
demand of the self-attention operation. For example, some [4],
[11], [13], [16], [27], [45], [63], [65], [75], [79], [84], [88]–[90]
augment the architecture of the self-attention layer to efficiently
capture the relation between a large number of entities. Our
work is compatible with most of them [4], [11], [27], [63], [79],
[88], [90] because they decompose a very large self-attention
operation (e.g., sequence length ≥ 4096) into a sequence of
multiple, smaller conventional self-attentions.

Moreover, ELSA is fundamentally different from these
software approaches in that it takes a more model-agnostic
approach without requiring retraining, which can be very
expensive computationally on a large-scale language model.
Finally, most software-only approaches [4], [11], [45], [63],
[65], [89] in fact fails to achieve the inference speedup for
reasonable sequence length (e.g., <2048), despite a theoretical
reduction in the number of operations. Specifically, a recent
work [84] finds that sparse attention techniques achieve very
little speedup (e.g., 20% speedup for 2% accuracy loss), and
Reformer [45] fails to achieve any speedup for sequence length
less than 2048, due to its huge constant in their time complexity.
Even in the case of concurrent works achieving speedup on the
commercial hardware for sequence length <2048, their reported
speedup from approximation is around 1.3×-1.7× [13], [84],
which is far less than what ELSA achieves with approximation.

VI. RELATED WORK

Hardware Support for Attention Mechanisms. A few
hardware accelerators related to the attention mechanism
are recently proposed. A3 is the most closely related work,
which is discussed in Section V-E. MnnFast [39], Manna
[74], and Mann Dataflow accelerator [60] are also relevant
in that they contain modules that can potentially be utilized
to accelerate the attention mechanism. However, their focus
is on the end-to-end hardware implementation of particular

4TPUv2 has a peak throughput of 180 TFLOPS with its bfloat16 internal
representation. We assume that it has 1/4× peak throughput with FP32 (45
TFLOPS) and then compute its iso-peak-FLOPS throughput by dividing the
actual TPU throughput by 45/13 as twelve ELSA accelerators we used for the
comparison with GPU has 13 TOPS peak throughput (instead of 180/13).



neural network models without fully exploiting approximation
opportunities, such as Google NTM/DNC [25], [26] for Manna
and Facebook End-to-End Memory Network [77] for MnnFast.

NN Approximation with Hardware Support. There are
prior works presenting various forms of approximation
strategies to improve neural network performance and energy
efficiency. Specifically, works such as [28], [34], [37], [38],
[44], [59] investigate the efficient use of quantization and
low-precision operations for neural networks. Furthermore,
other works [53], [67] propose the approximate MAC unit
to achieve a similar goal. More closely related works are
ones focusing on finding values that are less likely to affect
the final output of the neural network models. SnaPEA [1],
ComPEND [50], ZAP [72], and RnR (Reduce and Rank) [66]
are representive examples.

Hardware Accelerators for NN. Various hardware
accelerators [6], [8]–[10], [19], [21], [29], [41], [42], [69] have
been proposed to accelerate key neural network operations
represented as matrix multiplications. Specifically, several
proposals [2], [17], [31], [32], [46], [58], [92] focus on the
sparsity of the activation and weight matrices to further
accelerate such operations. Our work differs from these works
in that i) we provide the unique approximation scheme that
dynamically sparsifies the key matrix, and ii) specifically
targets the self-attention mechanism.

VII. CONCLUSION

The self-attention mechanism is recently getting a large
amount of attention for its ability to capture relations within
input entities. Considering that it is emerging as a key primitive
of many modern state-of-the-art neural network models in
various domains, it is crucial to accelerate this operation for
better performance and energy efficiency. Our work focuses
on the approximation opportunity within this operation and
co-designs a specialized approximation algorithm and hardware
for this operation to significantly reduce the amount of
computation for this operation. With this reduction, ELSA
achieves significant improvements in both performance and
energy efficiency over the conventional hardware like GPU.
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