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Abstract—Object serialization and deserialization (S/D) is an
essential feature for efficient communication between distributed
computing nodes with potentially non-uniform execution envi-
ronments. S/D operations are widely used in big data analyt-
ics frameworks for remote procedure calls and massive data
transfers like shuffles. However, frequent S/D operations incur
significant performance and energy overheads as they must
traverse and process a large object graph. Prior approaches
improve S/D throughput by effectively hiding disk or network I/0
latency with computation, increasing compression ratio, and/or
application-specific customization. However, inherent dependen-
cies in the existing (de)serialization formats and algorithms
eventually become the major performance bottleneck. Thus, we
propose Cereal, a specialized hardware accelerator for memory
object serialization. By co-designing the serialization format
with hardware architecture, Cereal effectively utilizes abundant
parallelism in the S/D process to deliver high throughput. Cereal
also employs an efficient object packing scheme to compress
metadata such as object reference offsets and a space-efficient
bitmap representation for the object layout. Our evaluation of
Cereal using both a cycle-level simulator and synthesizable Chisel
RTL demonstrates that Cereal delivers 43.4x higher average
S/D throughput than 88 other S/D libraries on Java Serialization
Benchmark Suite. For six Spark applications Cereal achieves
7.97x and 4.81x speedups on average for S/D operations over
Java built-in serializer and Kryo, respectively, while saving S/D
energy by 227.75x and 136.28 x.

Index Terms—Object serialization, Domain-specific architec-
ture, Data analytics, Apache Spark, Hardware-software co-design

I. INTRODUCTION

Object serialization and deserialization (S/D) is a fundamen-
tal operation in modern big data analytics for portable, loseless
communication between distributed computing nodes. For
efficient inter-node data transfers, the sender node first serializes
a sea of objects into a stream of bytes; the receiver node then
reconstructs the objects from the serialized byte stream. Massive
data manipulation operations in today’s big data analytics
frameworks [3]-[6], [11], [55], such as map/reduce, shuffle,
and join, heavily utilize S/D operations.

S/D operations incur substantial performance overhead to
modern data analytics frameworks running on managed runtime
environments like Java and Scala. Recent studies report that
serialization overhead accounts for some 30% of the total
execution time in popular big data analytics frameworks [40],

Tae Jun Ham?

Sunmin Jeong? Jun Heo?
Jae W. Lee!

fSeoul National University

{miguel92, sunnyday0208, j.heo, zmgp, taejunham, jaewlee}@snu.ac.kr

[41]. According to Google, serialization, along with other low-
level operations like memory allocation, compression, and
network stack processing, consumes 20-25% of total CPU
cycles as "datacenter tax" [9].

Unfortunately, existing S/D libraries still have relatively low
throughput for various reasons. For example, the Java built-in
serializer (Java S/D) embeds type strings (e.g., class and field
names) in a string format to require expensive string matching
operations for type resolution during deserialization and bloat
the serialized stream. Other S/D libraries improve throughput by
adopting more compact representations for types (i.e., integer
class numbering) [34], [41], [51], hand-optimized serialization
functions [34], [48], compilation-based approach to obviate
the need for extracting field information at runtime [45], direct
operations at backing array to reduce the encoding cost [12],
and sending a raw object graph while overlapping computation
with communication [41].

Although these proposals address some of the inefficiencies,
there is still substantial room for improvement. For example,
our experiments demonstrate that S/D operations still take about
28% of total execution time on average (and up to 83.4%)
for six Spark applications even if we use Kryo [34], a highly
optimized S/D library for Java (details in Section III).

A serialization operation requires a recursive traversal of
object graph from the top-level object being serialized as
all the referenced child objects should be serialized together.
Furthermore, it invokes a large number of function calls to
extract individual fields for each object (e.g., reflection [30]).
Existing S/D libraries are inefficient when handling those
operations, partly due to their limited use of parallelism within
the S/D process. Even with highly parallelized S/D algorithms,
their performance on general-purpose CPUs is bottlenecked
by limited microarchitectural resources such as instruction
window and load-store queues. Even worse, S/D operations
are characterized by frequent indirect loads, random memory
accesses, large-volume memory copies, and little data reuse,
which make it difficult to handle them efficiently on CPUs.

To address these limitations, we propose Cereal, a hardware
accelerator for S/D operations. We carefully co-design the
serialization format with the hardware architecture to effectively
leverage multiple levels of parallelism during the S/D process.
This multi-level parallelism harnesses massive memory-level



parallelism (MLP) for Cereal to achieve high memory band-
width utilization, and hence high S/D throughput. To keep the
space overhead for metadata low, we also propose an efficient
object packing scheme to compress object reference offsets by
preserving only significant bits (e.g., discarding leading zeros)
and a bitmap representation for the object layout. In summary,
this paper makes the following contributions:

« We propose a new serialization format to better expose coarse-
grained parallelism in the S/D process, while maintaining
compact representation of metadata via efficient object
packing.

o We architect and implement Cereal, a specialized architecture
for S/D operations, which is co-designed with the new
serialization format.

« We integrate Cereal with Apache Spark on HotSpot JVM to
validate its functionality and evaluate its performance using
real-world data analytics workloads.

« We demonstrate that Cereal achieves significant speedups
and energy savings over state-of-the-art software S/D imple-
mentations on Java Serialization Benchmark Suite and Spark
applications.

II. BACKGROUND

Object Serialization. Serialization is a process of converting
the objects into a stream of bytes and deserialization is a reverse
process of reconstructing the original objects from the stream
of bytes. S/D is a fundamental operation in data analytics
frameworks for massive data communication and manipulation
(e.g., for join and shuffle), [/O management in a distributed file
system, and messaging for remote procedure calls [5], [18], [55].
There are a variety of S/D implementations depending on use
case, data types, and necessity for supporting references (pointer
objects) [34], [45]. The serialization process becomes more
complicated with references as a recursive object graph traversal
is required to identify all child objects transitively pointed to by
the top-level object. Indirect loads to fetch information about
the layout of an object make this process even slower. Recently,
S/D has been identified as a major performance bottleneck in
data analytics frameworks [39], [41], [52]. Thus, this paper
focuses on optimizing S/D operations in Java as many such
frameworks build on JVM-based execution environments.
Java Object Layout. Figure 1(a) illustrates the memory
layout of Java objects in HotSpot [27], the most widely used
production JVM, using an example code snippet. An object has
a fixed-length header, followed by fields that hold the values
and references of the object. The header is 16B in length
and composed of a mark word (8B) and a klass pointer (8B).
The mark word includes an identity hash code (31 bits), a
synchronization state (3 bits), GC state bits (6 bits), and 25
unused bits. A klass pointer points to type metadata, called
type descriptor, which contains the object layout as well as
the total object size. The object layout includes the offsets of
all the references in the object, which a serializer utilizes to
locate them.

Java built-in Serializer. Java built-in serializer [28] (Java S/D)
is the baseline serializer provided by Java. When an object
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Fig. 1. Serialization format of three Java serializers

is serialized, the serialized stream contains the field data of
the object and metadata for its class and the classes of all
the objects it recursively references to. Figure 1(b) shows an
example of a serialized stream of Java S/D. Java S/D stores the
names of all classes and fields as string types. In addition, Java
S/D stores the length of the name, the metadata of the fields
(number of fields, field types), and other metadata associated
with serialization. As a result, the serialized stream contains
a large amount of metadata. For reference fields, Java S/D
uses Package java.lang.reflect [30] to get the content
of each reference field and insert it to the serialized stream.
For example, Field getField (String name) in the package
returns a Field object of the class specified by name and void
set (Object obj, Object value) sets the target field with
the input value. Generally, the methods in this package are a
well-known source of computational overhead in Java S/D as
they perform string lookups with no given type information.

Kryo Serializer. Kryo [34] is one of the most popular third-
party serialization libraries for Java. Kryo addresses the
limitations of Java S/D with manual registration of classes.
Figure 1(c) shows a serialized stream in Kryo. Unlike Java
S/D, Kryo represents all classes by just using a 4B ClassID
(integer class numbering). All field types and primitive types
(e.g., Int, Long) are also registered to get assigned distinct
ClassIDs. By registering classes and types (type registration),
Kryo reduces the overhead of storing type names as strings
(plus additional metadata) in Java S/D. And, there is a Null
check (1B) field to mark an object with no fields. Overall,
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Fig. 2. S/D overhead in Spark applications with different serializer libraries

there is much less metadata than Java S/D as Kryo only stores
the actual data. Kryo also uses an optimized library [49] to
get class/field information (serialization) or set field values
(deserialization), instead of the original reflect package in Java
S/D. These optimizations reduce the time and space overhead
drastically, but it requires users to manually register the class
of every single object being serialized. The same type registry
must be used for deserialization. Therefore, Kryo requires
additional user effort for performance.

Skyway Serializer. Skyway [41] is a state-of-the-art serializer
specialized for data shuffling between nodes in a distributed
system. Skyway proposes a way to transfer an object by a
simple memory copy to reduce the computational overhead
of disassembling and reassembling it. This eliminates the cost

of accessing any field or type imposed on existing serializers.

Skyway also uses an integer type ID (like Kryo) for identifying
the class of the object instead of type string. Skyway also keeps
a global type registry, which maps every type string to its unique
type ID (like Kryo). Unlike Kryo, however, Skyway can reduce
manual type registration effort by utilizing an automatic type
registration system. During serialization, Skyway converts the
absolute address of the object to a relative address, eliminating
the overhead of invoking methods in the reflect package for
adjusting references. Skyway reduces the user effort as well as
computational overhead, to report a 16% speedup over Kryo
on average [34]. However, the sequential reference adjustment
of objects at the receiver is still inefficient. Also, the size of
the serialized byte is larger than Kryo’s size as the object is
serialized as is including reference fields and headers.

IIT. ANALYSIS AND MOTIVATION

S/D Overhead. To quantify the S/D overhead in data analytics
applications, we analyze the performance of six data analytics

applications on Apache Spark running on HotSpot JVM [27].

Spark extensively utilizes S/D operations for 1) input/output
management in a distributed file system (e.g., HDFS [50]), 2)
communication between the master and worker nodes, 3) data
manipulation across the nodes such as Shuffle, and 4) software
caching and data spill for efficient memory management. These

use cases are common in other large-scale data analytics
frameworks. We select six S/D-intensive applications from
Intel HiBench [24] and execute them using two Spark executor
instances on Intel i7-7820X Processors [25]. More detailed
experimental setup is available in Section VI-A. We breakdown
the total application time into 1) computation time, 2) GC time,
3) I/O time, and 4) S/D time.

Figure 2 shows a runtime breakdown of the six applications
using Java S/D (Figure 2(a)) and Kryo (Figure 2(b)), which are
used by Spark. Our analysis shows that the overhead of S/D
operations is substantial, accounting for an average of 39.5%
of total execution time for Java S/D (and up to 90.9% with
SVM), and 28.3% for Kryo (and up to 83.4% with SVM). As
discussed in Section II, Java S/D embeds a string for every class
and field into the serialized stream, which leads to substantial
I/O overhead (up to 13.9% for NWeight). Even worse, the
excessive use of reflection functions for type resolution, which
involve expensive string match operations, makes S/D process
very slow. In contrast, Kryo employs integer class numbering,
minimizing type metadata overhead. Also, Kryo does not need
to use reflection for type resolution but utilizes a custom
reflection library for (re)storing values, to yield substantially
lower runtime overhead than Java S/D. However, even with
Kryo, the S/D overhead is still substantial, taking nearly 30%
of total execution time on average.

To understand the S/D performance better, we use three data
structure benchmarks commonly used in many applications,
Tree, List, and Graph, and measure the IPC, cache miss rate, and
bandwidth utilization of S/D process using Linux Perf tool [14].
For each benchmark, we scale the number of children nodes
and depth (Tree), the size (List), and the number of connected
edges (Graph). More details of these benchmarks are covered
in Section VI-A.

There are several observations with the results. First, Fig-
ure 3(a) shows relatively low average IPCs for both Java S/D
(1.01) and Kryo (0.96). Second, Figure 3(b) demonstrates that
the degree of (temporal) locality is pretty low (i.e., cache miss
rate is high). Finally, even with a high cache miss rate, both fail
to fully utilize memory bandwidth due to limited parallelism
in the S/D process (Figure 3(c)).

Motivation for Specialized Hardware. In an abstract form,
the key operations in the S/D process include (i) object graph
traversal for serialization and (ii) copying the contents of the
visited object into another space. These operations are handled
poorly in general-purpose CPUs for the following reasons.
First, object graph traversal requires many indirect loads to
visit its child objects. Such indirect loads inherently generate
lots of random memory accesses, which significantly degrade
the cache performance. A copying operation, which touches
large memory regions, evicts cache lines to increase cache
miss rate. Moreover, the object graph has a low degree of
parallelism without exploiting intra-object parallelism, and
CPUs cannot fully utilize memory-level parallelism (MLP) due
to limited instruction window and load/store queue size, hence
yielding low memory bandwidth utilization (Figure 3(c)). As
a result, Kryo improves the Java S/D by removing several
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inefficiencies like size reduction and reducing the use of
expensive reflective functions, but the performance gain is
marginal (Figure 3(d)). Moreover, many big data applications
are compute-intensive [41], [44], [54] for user computation
to contend with S/D operations for CPU cycles. Thus, a
specialized architecture designed to extract parallelism within
the S/D process can substantially improve the S/D performance
and reduce the CPU load.

IV. SERIALIZATION FORMAT FOR CEREAL
A. Serialization Stream Layout

Serilization Format. Figure 4 presents the baseline serializa-
tion format of Cereal (before object packing) with an illustrative
example. Figure 4(a) shows an object graph with four objects
with objA as the root object. It also shows how the layout
bitmap marks the location of each reference field. Since all
fields in a JVM object are 8B aligned, one bit of the layout
bitmap corresponds to an 8B in the heap. If the object contains
a reference, the bit at that location is set to 1, and the size of
the object can be obtained by multiplying the layout bitmap
size in bits by 8B. Figure 4(b) illustrates the serialized format
of Cereal composed of three structures: value array, reference
array, and layout bitmaps (including object graph size). These
structures are fed into the object packer (Section IV-B) to
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Fig. 4. Illustration of Cereal’s baseline serialization format: (a) original
memory layout (b) serialized format (c) deserialized format

reduce the size of the serialized stream. Figure 4(c) shows how
the four objects are reconstructed at the base address 8000
from the serialized stream.

A notable difference of Cereal from Skyway is the way
to store references and values and the aforementioned object
packing scheme. During deserialization, Skyway needs to adjust
the references sequentially using relative addresses. However,
because Cereal stores values and references separately, it can
handle value copying and reference adjustment in parallel.
Since the layout bitmap contains the location of each reference,
the operation on the value and the reference can be performed
independently. This enables Cereal to exploit a greater de-
gree of parallelism, hence achieving higher throughput using
specialized hardware.

Space Overhead Analysis of the Baseline Format. The
overhead of the layout bitmap itself is proportional to the
object size. Since one bit of the layout bitmap is responsible
for 8B, the size of the layout bitmap is 1.56% of the object
size. Also, when the layout bitmap is stored as a byte stream, it
is necessary to tell the boundary between two adjacent objects
in the layout bitmap. The easiest way to distinguish the layout
bitmap boundaries would be to store the layout bitmap length.
However, since the space overhead of layout bitmap length
is 8B per each object, if the object size is small, the layout
bitmap length can be much larger than the data size stored.
Alternatively, a layout bitmap could be stored with padding
using fixed bucket sizes (4B, 8B, and so on), but, depending on
the range of layout bitmap values, the space overhead due to
padding can be significant. For references, the value (relative
address) is the difference between the top-level object address
and the referenced object address in the deserialized stream.
Typically, it takes much fewer bits than 8B (long type) to
represent the relative address. Finally, there is a 4B overhead
representing the sum of object sizes (before serialization) that
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are included in this serialized format. Using the serialization
format in this section as is can result in large space overhead
than the existing schemes. To compensate for this overhead,
we propose an object packing scheme to compress both the
layout bitmap and references in the following section.

B. Object Packing Scheme

Cereal uses an optimized packing scheme to eliminate
the redundant metadata (layout bitmap length and excessive
padding) and reduce the overall size of serialized bytes. Figure 5
shows the optimized serialization format of Cereal with object
packing. Figure 5(a) illustrates a step-by-step process of
packing four references. In Step 1, the object packer extracts
only significant bits from the reference bits (i.e., dropping
leading zeros) and add an end bit (1 in bold). In Step 2, it
puts the bit string (with optional padding zeros) to 1B buckets
to make it byte-aligned. Using the end map to indicate the
boundaries of the packed references (shown in Figure 5(b))
occupies much less space than storing the layout bitmap length
for each object or using a static bucket size. When deserializing
the serialized stream Cereal can process multiple values and
references by inspecting the end map. Thus, we apply this

object packing scheme to both the layout bitmap and references.

In contrast, the value array (with headers and values) is stored
as in the baseline format (Section IV-A) without applying this
scheme.

V. CEREAL ARCHITECTURE
A. Overview

Figure 6 shows an overview of Cereal architecture. The host
issues a serialization or deserialization request through the
simple software interface (explained in the paragraph below).
This request is then buffered in Cereal’s command queue. The
request scheduler inspects the request at the head of the queue
and finds the available serialization unit (SU) or deserialization
unit (DU). If found, it forwards a request to the corresponding
unit, which then starts the execution. Our Cereal interacts with
the memory system directly without going through the cache
hierarchy. Instead, Cereal has its own memory access interface
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Fig. 6. Cereal architecture overview

(MAI), which performs basic functionalities such as requesting
coalescing (as in conventional MSHRs).

Software Interface. Cereal shares the similar serialization,
deserialization interfaces with other popular serializers such
as Kryo [34] and Skyway [41], which essentially makes
replacing a conventional serializer/deserializer to a Cereal
serializer/deserializer a trivial work. Initialize is simply
called at the beginning of the application to secure a cer-
tain amount of memory region for Cereal’s S/D process.
RegisterClass(Class Type) registers the specified class so
that the class can be serialized and deserialized with Cereal.
This function should be called once for every type that needs
to be serialized or deserialized. Note that this function is
effectively identical to the Kryo serializer’s function having
the same name. To serialize an object obj, the user needs to
use WriteObject(ObjectOutputStream oos, Object obj).
Here, the ObjectOutputStream oos is often connected to the
FileStream for the output file. To deserialize an object, the user
should use ReadObject(0bjectInputStream ois) which re-
turns the deserialized object. Here, ObjectInputStream
ois provides the raw byte sequences from the associated
FileStream.

Memory Access Interface (MAI). MAI is a memory access
interface for our accelerator. The main role of the MAI is to
correctly return the response to requests from various modules
of Cereal. The MAI contains an associative memory with 64
entries. Each entry has the memory address for this outstanding
request, the list of modules that it should send the responses
to, and the associated metadata related to this memory request.
In addition, the MAI also contains multiple reorder buffer
which reorders the unordered memory responses so that the
requester can receive these responses in order of the original
requests. Finally, the MAI also supports an atomic read-modify-
write (within an accelerator) so that a module within this
accelerator can safely update a value without a race. For
this atomic operation, the MAI contains another associative
memory structure, which buffers outstanding read-modify-write
operations.

B. Serialization Unit (SU)

Serialization Flow. Figure 7 shows the block diagram of our
serialization unit (SU). At a high level, this unit consists of
four components: header manager, object metadata manager,
object handler, and reference array writer. Each of these
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components performs a different functionality. Specifically, the
header manager is responsible for inspecting object headers and
updating the headers. The object metadata manager receives the
object header from the header manager, fetches all the necessary
object metadata from memory, and then generates a packed
layout bitmap in the Cereal serialization format (Figure 4 and
5). The object handler receives the object layout information
from the object metadata manager and fetches the object from
memory. Using this layout information, the object handler
can distinguish the references and values within this object.
Then, it sends the references (i.e., addresses of the referenced
objects) to the header manager, and updates the value array in
the memory. Lastly, the reference array writer receives object
relative addresses from the header manager, performs packing
(Section IV-B), and outputs the packed reference array.

Serialization starts when the object enters the header manager.
@ Every time an object in the object graph is visited, the header
manager needs to check its header to determine if it is visited.
@ If the object has not been visited, the header manager
sets the object’s relative address as the sum of the already
serialized object sizes, sends it to the reference array writer,
and updates the header as visited by storing the relative address
in the object header. At the same time, the header manager
also sends the object/klass address to the object metadata
manager. If the object is already visited, which implies that the
object is already serialized, the header manager just gets the
relative address from the object header, sends it to the reference
array writer, and then gets the new object address. Once the
object metadata manager gets the object/klass address from
the header manager, serialization of the current object starts. ©
The object metadata manager fetches the object’s metadata to
identify which of 8-byte fields following the object header are
references/values. @ Once the metadata is loaded, the object
metadata manager generates the layout bitmaps (see Figure 4)
and stores them in memory. At the same time, this metadata
passed to the object handler. @ The object handler loads the
object from memory and @ gathers value fields to update
the value array in memory or @ passes the references (i.e.,
addresses of the referenced objects) to the header manager.
Below, we discuss the operations of each component in detail.

Header Manager. Header manager takes object addresses as
its inputs. For each object provided, it first reads the header
of the object and then inspects it. By inspecting the header,
the header manager identifies whether this object was already

visited or not. If it is not, it means that this object needs to
be serialized. In this case, the loaded header is passed to the
object metadata manager, which will then utilize this header
to fetch various object metadata. Another job of the header
manager is to update the object header. First, it needs to mark
that this object is visited if this is the first time to trace this
object. Second, the header manager needs to record the relative
address of the current object to the header (see Figure 4) . This
value equals the total serialized object size so far and indicates
the relative address of the currently serialized objects in the
deserialized format. When the object metadata manager returns
the object size information, the header updates a counter that
tracks this value. The last responsibility of the header manager
is to pass the relative addresses of the current object (i.e., the
relative address in the deserialized format) to the reference array
writer. As explained, if the object was not visited previously,
this address is equal to the total serialized objects size. In case
the object was previously visited, the relative address is already
recorded in the header and thus can be extracted from it. Note
that the header manager cannot process another object until it
receives the object size from the object metadata manager and
update its counter.

Object Metadata Manager. Object metadata manager re-
trieves the object header from the header manager and fetches
relevant object metadata (e.g., object layout, object size) from
memory. Then, it passes the object layout fetched from memory
to the object handler. In addition, it generates the packed
layout bitmap utilizing the object layout information. Finally,
it also passes the fetched object size information to the header
manager so that the header manager can update the total size
of the objects serialized so far.

Object Handler. Object handler receives the object metadata
(including object layout) from the object metadata manager.
Once receiving the object metadata, the object handler loads
the object from memory. When the object is loaded, the values
(including the header) or the references are extracted. If a
reference is extracted, the object handler passes it to the header
manager. Here, it is important to pass the references within
the object to the header manager in the original order. To
guarantee that the memory accesses return in the requested
order, we utilize the reorder buffers in the memory access
interface (MAI). When a value is extracted, the object handler
first checks if it is a header. If so, the klass address field
is translated to the class ID by performing a lookup on its
content-addressable memory (CAM) structure (Klass Pointer
Table, 4KB), whose contents are filled when RegisterClass
API is called in the software. These headers and values are
buffered and then stored in memory at 64B granularity when
the buffer becomes full. The stored data in memory is the value
array of Cereal serialization format (Figure 4).

Reference Array Writer. Reference array writer is a module
that outputs the packed reference array. It receives the object
relative addresses from each object handled by the header
manager and then performs the packing to generate the packed
reference array.
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C. Deserialization Unit (DU)

Deserialization Flow. Figure 8 shows the block diagram of
our deserialization unit (DU). This unit consists of a layout
manager, a block manager, and multiple block reconstructors.
@ Here, the layout manager is a module that fetches the layout
bitmap, unpacks it, and counts the number of Os and 1s in the
layout bitmap and then identifies how many values/headers
and references that a single block (64B) has. Then, it sends
the 8-bit layout bitmap corresponding to a single block along
with the number of 1s and Os to the block manager. @ The
block manager is a module that internally prefetches i) the
value array, and ii) the packed reference array. Once fetched,
the packed reference array is unpacked immediately. When the
block manager receives the 8-bit layout bitmap chunk, along
with the number of value/headers and references, it retrieves
1) the exact amount of values (and headers) in the block from
its internal value array loader and ii) the exact amount of
references in the block from its internal reference array loader.
© This block manager dispatches this loaded layout bitmap,
values, and references for a single block to one of the available
block reconstructors. @ Finally, the block reconstructor scans
the 8-bit layout bitmap and reconstructs them to 64-byte output
according to the layout bitmap. @ After reconstruction, block
reconstructor writes the output to its destination address.

Layout Manager. Layout manager module eagerly fetches the
packed layout bitmap, unpacks it, and counts the number of Os
and 1s in a single 64B block. It has a hardware module named
layout bitmap loader, which eagerly prefetches the packed
layout bitmap. It maintains a set amount of internal buffer and
eagerly issues a load request to the memory whenever this
buffer is empty. This loaded layout bitmap is then fed to the
custom unpacking module, which unpacks the layout bitmap.
Finally, the custom logic counts the number of Os and 1s in
a single cycle and passes this information and the unpacked
layout for a single block to the next module, block manager.
Block Manager. Block manager module also includes two
modules that eagerly prefetch the value array and the packed
reference array, respectively. As in the layout manager, the
loaded packed reference array is unpacked with the custom
hardware module, and the unpacked result is stored in the
internal buffer. Whenever the layout manager passes the 8-bit
layout bitmap and the number of Os and 1s, it retrieves the
number of values (i.e., equal to the number of 0s) from the value
array loader and retrieves the number of references (i.e., equal to
the number of 1s) from the reference array loader. Then, it sends
i) 8-bit layout bitmap, ii) retrieved values, and iii) retrieved

references to one of the available block constructors. In addition
to those three values, it also maintains the internal counter that
counts the number of 64B blocks that it processed to generate
the destination address where the block reconstructor should
write its outputs.

Block Reconstructor. Block reconstructor can start reconstruct-
ing the output when the block manager assigns the block to
it. During the time it is reconstructing a block, it marks itself
busy and this prevents the block manager from issuing another
work to this block reconstructor. With the 8-bit layout bitmaps,
the block reconstructor simply puts the values to where the
corresponding layout bitmap value is zero while putting the
references to where the corresponding layout bitmap value is
one. Additionally, the block reconstructor identifies whether
it has a header field that represents the class ID using a 8-bit
layout bitmap chunk along with its corresponding end map. If
so0, it needs to translate that class ID to a klass address by
checking the appropriate index from a SRAM structure (Class
ID Table, 2KB) which has class ID to klass address mapping.
As in the case of serialization, this SRAM is populated when the
RegisterClass API is called in the software. Once finished,
it sends the write request of the resulting 64B block to the
provided destination address and marks it not busy.

D. Parallelism in Cereal

Cereal exploits three different forms of parallelism.

o Operation-level parallelism: This is the parallelism across
S/D operations. With multiple Cereal SUs and DUs, multiple
S/D operations can be executed in parallel. This form of
parallelism is essentially the task-level parallelism exploited
by the multi-threaded execution of S/D operations on multiple
CPU cores.

o Object-level parallelism: This is the parallelism across objects
within an object graph. Our SU exploits pipeline parallelism
to process multiple objects within the same object graph.
Each block in Figure 7 processes different objects within
the object graph.

o Block-level parallelism: The is the parallelism across multiple
unpacked blocks in DU. Decoupled value/reference array
and layout bitmap enable deserialization to be processed in
parallel with multiple block reconstructors.

Existing libraries such as Java S/D and Kryo also utilize
operation-level parallelism with multiple CPU cores (i.e.,
multi-threaded execution). However, those libraries cannot
easily exploit neither object-level parallelism nor block-level
parallelism. This is because conventional CPU lacks the
ability to extract such parallelism due to the limited resources
(i.e., instruction window, load/store queue size). Furthermore,
the existing S/D libraries’ serialization format also limits
the amount of parallelism. In contrast, Cereal leverages
hardware specialization with tightly-coupled software format
optimization to fully exploit abundant parallelism within these
operations.



E. Implementation Details

Header Extension. Cereal requires a certain amount of per-
object metadata for its serialization process. However, assigning
a separate memory address space for these per-object metadata
leads to a performance degradation since the Cereal serializer
cannot easily retrieve the address for the specific object’s
metadata. To avoid this performance degradation, Cereal
extends the JVM so that all potentially serializable objects
(whose type implements Java Serializable interface) allocate
an additional 8B in its header so that the Cereal serializer can
utilize that space for metadata necessary during the serialization.
By doing so, these metadata can easily be retrieved with
a simple relative address calculation on an object address.
These metadata include i) metadata to track visited objects, ii)
metadata to support shared objects, and iii) metadata to record
relative address for the already serialized objects.

Tracking Visited (Traversed) Objects. A conventional way
of tracking the visited object for the object graph traversal is
maintaining a single bit on the object header, then mark it
when it is visited. However, that approach requires resetting
the visited bit to zero every time the traversal ends. In our
case, this means that all object’s visited bits need to be cleared
at the end of the serialization. However, such overhead can
potentially negate the benefits of the Cereal. Thus, we assign a
certain number of bits (e.g., 16 bits in our case) in the object
header for this purpose. Every time a serialization happens
during the application runtime, a per-unit serialization counter
is incremented. Then, when the serializer visits an object during
a traversal, it compares its serialization counter with the value
in the reserved field of the object header. If these two values
are equal, this means that this object has been visited during
this serialization. If not, the current serialization counter is
recorded to mark that it is visited. This counter has a chance
to overflow; however, we clear this metadata during the Java
garbage collection so that the overflow is not likely to happen.
If a serialization counter is about to overflow, it is also possible
to force the garbage collection by invoking System.gc().

Supports for Shared Objects. During the serialization, we
record the relative address of the object for already serialized
objects. However, since there is only a limited space reserved
for this purpose, when multiple threads happen to perform
serialization on a shared object, only one thread can record the
value for this reserved space. In our implementation, we let
the very first thread to serialize this object reserve this header
area by writing down its unit ID to another reserved field.
Then, when other unit accesses this header and then checks the
unit ID field, it will find out that this object’s header area is
reserved for a different unit. In this case, Cereal cannot perform
the serialization and should fall back to the software-handled
serialization, which utilizes a thread-local hash table to record
the relative addresses for serialized objects. This can potentially
reduce the performance benefits of the Cereal; however, we
observe that real-world big data analytics workload essentially
does not serialize shared objects. Note that this unit ID field
can also be regularly cleared during a garbage collection.

TABLE I
ARCHITECTURAL PARAMETERS FOR EVALUATION

Host Processor

Core Intel (R) Core (TM) i7-7820X CPU 8-core @ 3.60GHz

LIS 32KB I-cache, 32KB D-cache

L2$ 1IMB (Private, Unified)

L3$ 11MB (Shared, Unified)

DDR4 Memory System
Organization DDR4-2400, 4 channels, 128GB
Bandwidth 76.8 GB/s (19.2 GB/s per channel),
Latency Zero-load latency 40ns
Cereal Configuration

Cereal Unit 8 Serializer Unit, 8 Deserializer Unit
MAI / TLB 4KB, 32B block size, 64 entries / 128 entries

Limitations on the Number of Class Types. Since Cereal
utilizes hardware structures (CAM for the serialization; SRAM
for the deserialization) for a klass address to the class ID
translation (during serialization) and a class ID to the klass
address translation, Cereal can only support serializations or
deserializations which involves less than the certain number of
serializable class types. However, in practice, our 4K entries
for this CAM and RAM is more than enough to run various
real-world applications. In fact, we found that our evaluated
real-world big data analytics applications running on Spark
has at most a few hundreds of serializable class types.
Address Translation and Cache Coherence. Cereal assumes
1GB huge pages, which are popular in a system with large phys-
ical memory size. Our prototype system has 128GB physical
memory, and thus we assume no TLB miss with our 128-entry
TLB. However, on a system with larger physical memory, a
TLB miss may happen in Cereal. Since Cereal Deserialization
Unit (DU) has sequential memory access pattern, the cost of
missing TLB can be amortized. On the other hand, Cereal
Serialization Unit (SU) includes random memory accesses, and
therefore TLB misses can potentially become a performance
bottleneck. Improving TLB effectiveness for accelerators is
an active research area, and we can leverage recent proposals
such as identity mapping with coarse-grained protection [20],
flattened/region-based page tables [23], coalesced/shared MMU
caches for a large working set [10], and speculative address
translation using huge pages [8]. For cache coherence Cereal
sends get coherence messages as in [37] to fetch the up-to-date
copy from either the on-chip cache or off-chip memory. As
Cereal is directly connected to the on-chip bus, participating in
the on-chip coherence domain is relatively straightforward.
A potential increase in memory latency due to coherence
operations can be effectively tolerated by Cereal’s pipelined
execution.

VI. EVALUATION
A. Methodology

Evaluation Model. We evaluate Cereal using a custom cycle-
level simulator integrated with a DRAM model similar to
what is used in popular architectural simulators [21], [47].
We integrated the simulator to the production-grade JVM
(OpenJDK 1.8.0.60 [43]) so that the simulator can access the
complex JVM internal functions, such as class, object layout,
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TABLE 11
MICROBENCHMARK CONFIGURATION

Tree narrow(leaf: 2, node: 2,097,150) / wide(leaf: 8, node: 19,173,960)
List small(length: 524,288) / large(length: 2,097,152)
Graph sparse(node: 4,096, edge: 1) / dense(node: 4,096, edge: 4,095)
TABLE III
SPARK WORKLOADS
Workload Type Input size
NWeight Graph 156MB
Support Vector Machine (SVM) | Machine learning 1740MB
Bayesian Classification (Bayes) Machine learning 1126MB
Logistic Regression (LR) Machine learning 1945MB
Terasort Sort 3072MB
Alternating Least Squares (ALS) | Machine learning 1331MB

and address/constant acquisition. We functionally validated
our simulator and checked that our simulator can produce the
functional outcome for the S/D during real-world workloads,
including Spark applications. We compare Cereal with two
software serializers; Java S/D and Kryo. For the Kryo, we use
Kryo version 4.0. Table I summarizes the system parameters
we use to evaluate the software serializers and Cereal. For the
power and area estimation, we implement Cereal modules in
RTL using Chisel3 [13], and then synthesize Cereal RTL using
Synopsys Design Compiler with TSMC 40nm standard cell
library. Throughout the evaluation, we assumed eight S/D units.
Each deserialization unit utilizes four-block reconstructors to
process multiple blocks in parallel.

Workloads. To evaluate Cereal, we use the three sets of
workloads; microbenchmarks, Java Serialization Benchmark
Suite (JSBS) [29], and real-world Spark applications. First,
we evaluate a set of microbenchmarks that serializes objects
whose object graph has a tree, list, or random graph shape.
Figure 9 shows the example layouts of our microbenchmark
set. Table II shows our microbenchmark configuration.

To compare Cereal with the performance of other S/D
libraries, we evaluate Cereal on JSBS as well. JSBS contains
a set of different serializers and repeatedly executes the S/D
process of each serializer using several pre-defined objects.
We execute all of the serializers in JSBS for 1,000 times and
compare average S/D speedup and the size of the serialized
object with Cereal.

Lastly, we evaluate Apache Spark 2.4.1 with Intel HiBench
7.0 [24]. We carefully select a different set of benchmarks that
heavily use the S/D process. Table III summarizes workloads
with the corresponding input size and type. we set a region-of-
interest (ROI) for the S/D event only and use sufficiently large
heap size (64GB) with the default heap size ratio (Young:Old
Generation = 1:2) to minimize the impact of GC.
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B. Microbenchmark Analysis

Figure 10 shows the overall speedup of Kryo and Cereal over
Java S/D. Throughout all benchmarks, Kryo achieves significant
speedups of 2.30x (serialization) and 52.3x (deserialization)
from its integer class numbering and tightly optimized reflection
functions. On the other hand, Cereal achieves speedups of
26.5x (serialization) and 364.5x (deserialization) over Java
S/D, which are much more significant than those of Kryo.

Cereal’s significant speedups come from the utilization of
multi-level parallelism that existing S/D libraries such as Java
S/D and Kryo fails to exploit. The third bar from each group
in Figure 10 (labeled "Cereal Vanilla") demonstrates this point.
In the figure, the third bar from each group represents the
hypothetical performance of Cereal without any parallelism (i.e.,
no pipelining, single block reconstructor for DU) except for
the operation-level parallelism (i.e., still assumes the multiple
SUs and DUs can run in parallel). Comparing those bars to
the third bars from each group (i.e., real Cereal performance),
we can identify that substantial amount of performance gains
are indeed attributed to the fine-grained parallelism.

Part of this parallelism, especially for DUs, is newly exposed
by efficient S/D format. Specifically, our serialization format
that decouples value array, reference array, and layout bitmap
allows the DUs to execute the deserialization process in parallel
at the 64B block granularity regardless of the object layout.
This enables a single DU to have multiple block reconstructor
modules to further improve the throughput. Also, our proposed
serialization format lets Cereal DU to handle deserialization
with sequential memory accesses and maximize the on-chip
data reuse. As a result, Cereal achieves higher speedups on
deserialization than serialization.

Figure 11 shows the bandwidth utilization during the
serialization and deserialization. For both Java S/D and Kryo
executed on CPU, the system utilizes only a small fraction of
the memory bandwidth it can use. For example, Java serializer
and Kryo utilizes an average of 2.71% and 4.12% of total



TABLE IV
SERIALIZED OBJECTS SIZE ACROSS VARIOUS MICROBENCHMARKS
. Tree List Graph
Unit (MB) Narrow | Wide | Small | Large | Sparse | Dense
Java S/D 23.0 148.6 8.0 59.4 22.1 115.5
Kryo 12.0 48.0 2.5 10.0 10.8 51.1
Cereal 16.1 80.0 16.0 47.8 2.4 2.4
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Fig. 12. Performance comparisons of different S/D libraries

DRAM bandwidth (i.e., 76.8 GB/s with four DDR4 memory
channels), respectively. This indicates that there is ample room
for a hardware accelerator to achieve a substantially higher
throughput without being limited by the memory bandwidth.
In fact, Cereal utilizes 20.9% of the peak DRAM bandwidth
on average (up to 74.5%), which leads to significant speedups
presented in Figure 10. Similar patterns are observed in
deserialization. Cereal utilizes 31.1% of the DRAM bandwidth
on average (up to 83.3%), while Java deserializer and Kryo
only use 3.48% and 4.50%, respectively.

Table IV compares the size overhead of microbenchmarks.
The size of our format is similar or a little larger than Java
S/D for Tree and List benchmarks. As our serialization format
focuses more on efficient computation, the Cereal serialization
format incurs modest size overhead mostly coming from
additional metadata and reference offsets that Java S/D and
Kryo do not include. However, Cereal provides the object
packing scheme to represent our metadata. As a result, the size
of Graph benchmark which has objects with many references
can be serialized much more efficiently than other formats.

C. JVM Serializer Benchmark Set

Figure 12 compares the normalized speedups of different
libraries for S/D. Cereal shows significantly high speedups
compared to the other 88 libraries, which achieves the 43.4x
speedups on average. Kryo-manual is the fastest library among
all serializers in our experiment. As an optimization, Kryo-
manual utilizes the integer class numbering to reduce size
and reflection overhead, optimized reflection functions in
deserializer, and manually optimized serialization functions.
Even with aggressive optimizations of Kryo-manual, Cereal
still outperforms the Kryo-manual by 15.1x due to better
computation efficiency that comes from utilizing multiple levels
of compute parallelism and memory-level parallelism. While
Cereal significantly outperforms others, the size of Cereal is
comparable to the others. Note that the size of Cereal is smaller
than the average size of all the benchmarks by 46% with its
packing scheme for the references and bitmap metadata.
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D. Apache Spark

Figure 13 shows the S/D speedup of Cereal over software
implementations on Spark applications. Compared to the Java
S/D, Kryo only achieves 1.67x speedup. On the other hand,
Cereal achieves 7.97x and 4.81x speedup over Java S/D and
Kryo throughout all the applications. This is because Cereal
utilizes specialized hardware to exploit abundant parallelism
within S/D operations exposed by the specialized serialization
format. By accelerating the S/D process, overall application
performance is improved by 1.81x (up to 4.66x) and 1.69x
(up to 4.53%) over Java S/D and Kryo, respectively. Figure 14
shows overall application performance improvements.

Figure 15 shows the bandwidth utilization of software S/D
and Cereal. The overall trends are similar to those of the
microbenchmarks and JSBS. Cereal utilizes substantially more
memory bandwidth than software schemes, and deserialization
significantly more than serialization.

We carefully co-design the serialization format to enable
specialized hardware to execute more efficiently. Consequently,
the serialization format of Cereal requires such additional
metadata, such as bitmap and references. As Java S/D and Kryo
do not include references in their serialized format, Cereal
has relatively large size overhead than Java S/D and Kryo
when the objects have a large number of references. In our
experiments, the size of Cereal is larger than Java S/D and Kryo
by 4.3% and 21.7%, respectively. However, Cereal focuses on
computation efficiency through its unique serialization format
and specialized hardware designed for the format.

Figure 16 shows the compression ratio of Cereal across
varying applications. Note that our packing scheme only
reduces the size of reference offsets and layout bitmaps.
Naturally, the scheme is not very effective for the objects
with a few references. Cereal can further reduce the size
of the serialized format by stripping markword (8B) in the
header that are often not necessary after the serialization (i.e.,
Header Strip in Figure 16). However, there are cases where
a certain field of the header (e.g., hashcode) needs to be re-
constructed during the deserialization [41], incurring additional
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Fig. 16. Compression rate of Cereal object packing scheme

performance overheads. While our packing scheme achieves a
moderate compression ratio (28.3% on average), the packing
scheme is very effective on some workloads such as NWeight,
which includes a very large number of references. For several
workloads like SVM, Bayes, and LR, most objects have just
a few references. Therefore, both our packing scheme and
markword stripping have little impact on the compression rate.

E. Area, Power, and Energy Analysis

Area. Table V shows the breakdown of the area in Cereal. Total
area of Cereal with 8 serialization and deserialization units is
3.857mm?. Note that the die size of our baseline CPU, Intel
17-7820X Processors with 14nm process, is 2362.5mm? [25].
Cereal occupies 612.5 times less area than our baseline CPU.
Considering that we synthesize Cereal using 40nm technology,
the effective area difference becomes even larger. A single
Serializer Unit occupies 0.058mm?, so the total area for eight
serializer units is 0.464mm?. A single deserializer unit occupies
0.281mm?2, so the total area for eight deserializer units is
2.248mm?. The others are system-wide components such as
TLB and MAI which consume 1.145mm?.

Power. Table V also shows the average power breakdown of
Cereal. Compared to the Host CPU power, whose TDP is 140W,
Cereal consumes 113.7x less power. This indicates that general-
purpose CPU is inefficient in performing S/D operations, which
mainly consists of very simple arithmetic operations and many
off-chip memory accesses. The use of specialized architecture
for S/D operations achieves both performance improvement
and power savings at the same time.

Energy. Figure 17 shows the energy consumption of Java S/D,
Kryo, and Cereal in Spark applications that are normalized
to numbers of Java S/D. Kryo, which runs on the host CPU
like Java S/D does, consumes geomean 1.39Xx less energy
compared to Java S/D during serialization, and geomean 2.01x
energy compared to Java S/D during deserialization. Since both
serializers run on the same device, the energy efficiency of
Kryo results from its speedup. On the other hand, Cereal
consumes geomean 313.6x less energy compared to Java
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S/D during serialization, and geomean 165.4x less energy
compared to Java S/D during deserialization. Also, Cereal
consumes geomean 225.5x less energy compared to Kryo
during serialization, and geomean 82.3 X less energy compared
to Kryo during deserialization. Cereal saves total 227.75x
and 136.28x S/D energy over Java built-in serializer and
Kryo respectively. The superior energy efficiency of Cereal is
attributed to both its high speedups and specialized hardware.

VII. RELATED WORK

Software-based S/D Optimization. Many S/D libraries have
been proposed [28], [32], [34], [38], [39], [41]. Instant
pickles [38] serializes Scala objects fast by using statically
generated S/D code. However, it still falls back to the reflection
function at runtime when a type cannot be settled at compile
time. Skyway [41] focuses on reducing the inefficiencies of
using reflective functions and user effort for manual type
registration. However, Skyway achieves only marginal average
performance gains over Kryo and can produce much more
inflated serialized streams. While many off-heap approaches [7],
[17], [36], [42] are proposed as an alternative way to cope
with several problems with data representation as an object,
they heavily relies on the user-level refactorization [42] or
heavy engineering effort both on dedicated compiler/runtime
systems [39].

Hardware-based S/D Optimization. Morpheus [52] aim to
minimize CPU burden by offloading deserialization to the
embedded core in the SSD. However, since the SSD controller
cores often be overloaded with various tasks such as FTL,
garbage collection, and flash control functions, adding more



burden to the cores leads to I/O performance degradation. As
an alternative approach, HODS [35] exploits separate FPGA
module to offload deserialization which works in parallel with
all storage operations. However, they have relatively narrow
applicability as they cannot deal with objects with references
in their fields inside the SSD. On the other hand, several
studies proposed to accelerate the serialization with FPGA-
based accelerators [46], [56], but they show relatively marginal
gains due to limited utilization of object-level parallelism.
Domain-specific Architectures for Big Data Applications.
Recent studies proposed various domain-specific architectures
to accelerate data-intensive workloads such as graph process-
ing [1], [2], [19], garbage collection [26], [31], [37], and
database applications [15], [16], [22], [33], [53]. Many of
these proposals overcome the limitations of the convention
CPU by i) specializing hardware for primitive data-intensive
or computational operations within the target algorithms,
ii) exploiting the abundant data-level parallelism within the
algorithm, iii) utilizing memory-level parallelism, iv) maximiz-
ing the re-use of on-chip memory to minimize the off-chip
communication, and v) adopting emerging technologies such
as near-data processing. Cereal also exploits such techniques to
design efficient hardware for serialization and deserialization.
Moreover, our proposal jointly optimizes the serialization
format along with the hardware design to achieve greater
efficiency.

VIII. CONCLUSION

This paper presents Cereal, a specialized architecture for
S/D operations, which are widely used in big data analytics
frameworks. With careful co-design of the serialization format
and hardware architecture, Cereal effectively exploits massive
memory-level parallelism (MLP) by processing in parallel
multiple references and values in an object as well as multiple
objects in the S/D process. Cereal also introduces an object
packing scheme to keep the metadata for a serialized stream
compact. Cereal demonstrates substantial performance and
energy efficiency gains over the state-of-the-art S/D libraries
running on a CPU for both synthetic benchmarks and real-world
data analytics applications on Apache Spark.
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