
BOSS: Bandwidth-Optimized Search Accelerator
for Storage-Class Memory

Jun Heo, Seung Yul Lee, Sunhong Min, Yeonhong Park, Sung Jun Jung, Tae Jun Ham, Jae W. Lee

Seoul National University

{j.heo, triomphant1, sunhongmin, ilil96, miguel92, taejunham, jaewlee}@snu.ac.kr

Abstract—Search is one of the most popular and important
web services. The inverted index is the standard data structure
adopted by most full-text search engines. Recently, custom
hardware accelerators for inverted index search have emerged to
demonstrate much higher throughput than the conventional CPU
or GPU. However, less attention has been paid to addressing the
memory capacity pressure with inverted index. The conventional
DDRx DRAM memory system significantly increases the system
cost to make a terabyte-scale main memory. Instead, a shared
memory pool composed of storage-class memory (SCM) devices
is a promising alternative for scaling memory capacity at a
much lower cost. However, this SCM-based pooled memory poses
new challenges caused by the limited bandwidth of both SCM
devices and the shared interconnect to the host CPU. Thus, we
propose BOSS, the first near-data processing (NDP) architecture
for inverted index search on SCM-based pooled memory, which
maintains high throughput of query processing in this bandwidth-
constrained environment. BOSS mitigates the impact of low
bandwidth of SCM devices by employing early-termination
search algorithms, reducing the footprint of intermediate data,
and introducing a programmable decompression module that
can select the best compression scheme for a given inverted
index. Furthermore, BOSS includes a top-k selection module in
hardware to substantially reduce the host-accelerator bandwidth
consumption. Compared to Apache Lucene, a production-grade
search engine library, running on 8 CPU cores, BOSS achieves a
geomean speedup of 8.1× on various complex query types, while
reducing the average energy consumption by 189×.

Index Terms—full-text search, inverted index, near-data pro-
cessing, storage class memory

I. INTRODUCTION

Full-text search is one of the most popular web services.

To provide users with quality service, efficient processing of

the inverted index is necessary, which is a fundamental data

structure for managing document information. Over decades,

these demands have motivated numerous research works, such

as compression schemes for the inverted index [14], [26],

[30], [68], [73], [77] and optimization techniques targeting

both general-purpose CPUs [25], [41], [53], [57], [64], [72]

and GPUs [15], [29], [43], [63], [66], [67], [76]. Recently,

hardware accelerators [34], [69] have been proposed to address

the architectural limitations of CPU or GPU-based systems,

hence providing much higher throughput and energy efficiency.

While these hardware/software techniques effectively im-

prove query throughput, much less attention has been paid

to address the memory capacity issue with search. Due to its

sheer volume, the inverted index is usually partitioned into

multiple shards and distributed across multiple nodes [13],

[16], [45]. While the size of an inverted index is ever-growing

with a steady flood of web documents, the conventional scale-

out approach to scale memory capacity by deploying more

nodes is not cost-effective as this adds not only more DRAM

DIMMs but also CPU cores. Thus, this solution charges a

super-linear increase in the system cost to the increase in

memory capacity. For example, doubling the memory capacity

by adding more CPU sockets can increase the system cost by

a factor of three [75].

The emergence of commercially available storage-class

memory (SCM) such as Intel Optane DC Persistent Memory

Module (DCPMM) [36] provides an opportunity to alleviate

this cost of memory capacity scaling. SCM is a new tier

in the memory hierarchy targeted to bridge the gap between

memory (DRAM) and disk. While SCM’s performance is worse

than DRAM in terms of both latency and bandwidth [22],

it has a significant advantage over DRAM for capacity. For

example, Intel Optane DCPMM can support up to 512 GB per

channel [9], which is 4× larger than the maximum DRAM

capacity per channel. Furthermore, a large number of SCM

DIMMs can be organized into a memory pool [20], [37],

[44] and connected to a CPU socket via a byte-addressable

cache-coherent interconnect such as Compute Express Link

(CXL) [8] and Gen-Z [7]. The capacity scaling of this memory

pool is virtually unlimited via memory disaggregation without

requiring additional CPU sockets, thus minimizing the increase

in the system cost.

Although cost-effective for capacity scaling, this SCM-

based memory pool introduces new challenges for architecting

a high-throughput full-text search system. Specifically, two

different bandwidth limitations have a negative impact on

query serving performance. First, the bandwidth of SCM device

itself is several-fold lower than that of a DRAM device [70].

Furthermore, the interconnect bandwidth to the host CPU is

much lower than that of DRAM channels to yield a much lower

bandwidth-to-capacity ratio. Without addressing this bandwidth

problem, scaling out the memory pool may introduce a severe

bandwidth bottleneck.

Therefore, we propose BOSS, a bandwidth-optimized search

accelerator targeting storage-class memory. To reduce the data

movement between the host CPU and the SCM memory pool

(i.e., shared interconnect bandwidth consumption), we adopt

the near-data processing (NDP) paradigm to place BOSS in

the memory pool, filtering out most of the traffic to the host

CPU. To further cut back the shared interconnect bandwidth

consumption, BOSS integrates top-k selection module into its

pipeline so that only the list of the top-k documents, instead of

the entire unsorted list, is transferred to the CPU as an outcome.

In addition, to prevent the low bandwidth of SCM devices from

becoming the performance bottleneck, BOSS integrates three

techniques to save SCM device bandwidth: (i) hardware skip

mechanism that only examines relevant data, (ii) minimizing

the volume of intermediate data in multi-term query processing,

and (iii) programmable decompression module that can select

the best compression scheme for a given inverted index.

In summary, this paper makes the following contributions:

• We identify a memory capacity problem in scaling an inverted

index. This work is the first proposal to host the inverted

index in SCM-based pooled memory for cost efficiency.

• We propose BOSS, a specialized NDP architecture for

efficient inverted index search, which accelerates the entire

search processing in a bandwidth-efficient manner.

• We provide a detailed evaluation of BOSS using a cycle-

level simulator as well as synthesizable RTL written in

Chisel. BOSS achieves a geomean 8.1× speedup over Apache

Lucene running on 8 CPU cores across various complex

queries while saving energy consumption by 189× at TSMC

40nm technology node.

II. BACKGROUND

A. Storage Class Memory

Storage Class Memory (SCM) is a new tier in the memory

hierarchy to bridge the gap between memory (DRAM) and disk

(HDD/SSD). There are many variants of SCM utilizing different

materials and device technologies, such as memristor [39], [71],

STT-RAM [32], [59], [74], phase change memory (PCM) [35],

[52], [54], and so on. While being byte-addressable and non-

volatile, SCM’s performance is worse than DRAM in terms

of both latency and bandwidth [22]. SCM often features

asymmetric read and write bandwidth with much slower writes

than reads [18]. For example, the read latency of Intel’s Optane

DC Persistent Memory Module (DCPMM) is about 3× slower

than DRAM, while its read and write bandwidth is about 3×
and 6× lower than DRAM, respectively [36], [70].

Despite this performance penalty, SCM is getting a spotlight

as a cost-effective alternative to DRAM for higher capacity,

especially in a data center environment [18]. For example, Intel

Optane DCPMM can support up to 512 GB per channel which

is 4× larger than the maximum DRAM capacity per channel.

Moreover, this capacity gain of SCM comes at a much lower

cost per bit [62] than DRAM. This makes SCM attractive for

big data workloads that require large memory.

Root

Node

Leaf

Node

Leaf

Node

Leaf

Node

Leaf

Node…

Set op.Decomp.Fetch
Top-k

retrieval

Shards of

Inverted Index

This, not

that.

doc 0

Is this

that?

doc 1 Term

Posting list

(docID,

term frequency)

this (0, 1), (1, 1), (2, 2)

not (0, 1)

that (0, 1), (1, 1), (2, 2)

is (1, 1), (2, 2)

and (2, 1)

This is

this, and

that is

that.

doc 2

(a) Inverted Index

User

Query

Re-

ranking

(b) Query processing structure

Fig. 1. Query processing using an inverted index

B. Inverted Index Search

Inverted Index. An inverted index is the standard data structure

to effectively manage document information in full-text search

engines. It is a set of key-value pairs called posting lists. A

posting list relates each term (key) to a list of documents

that contain it (value). Each posting list keeps all the unique

document identifiers (docIDs), sorted in order, that contain the

corresponding term, often together with additional information

such as term frequency, document length, and term’s position

in the document. Here we focus on the case where a posting list

is comprised of a docID and the term frequency, which can be

expressed as a tuple (docID, term frequency) as in Figure 1(a).

An inverted index is usually prepared offline before a query is

served. Once created, the inverted list is a (mostly) read-only

data structure [19].

Compression for Inverted Index. Since the size of the

inverted index is often huge owing to the scale of web

documents, it is a common practice to compress it to minimize

storage overhead. Each posting list is divided into multiple

fixed-size blocks, and deltas are computed between two

consecutive docIDs in each block. Compression is applied

to these deltas instead of the large docIDs themselves to

save storage. Some widely used compression schemes are

Bit-Packing (BP) [40], VariableByte (VB) [26], PForDelta

(PFD) [77], OptPForDelta (OptPFD) [68], Simple16 (S16) [73],

and Simple8b (S8b) [14]. Detailed explanations of these

schemes are available in Section VI.

Full-text Search Serving System. A typical query serving

workflow is comprised of five steps: 1) fetching necessary post-

ing lists in a compressed form from memory, 2) decompressing

the posting lists, 3) executing set operations, 4) retrieving top-k

results based on scores, 5) (optional) re-ranking. These steps

are illustrated in Figure 1(b).

A modern search engine like Google employs multiple

distributed nodes to hold the inverted index. It consists of

a root node and many leaf nodes (Figure 1(b)). Once a user

query is passed down to the root node at the back-end, it is

dissected into one or more terms whose corresponding posting

list is scattered over multiple leaf nodes [16]. Typically, the

inverted index is divided into multiple disjoint partitions, or

shards, according to the intervals of docIDs [19]. Each leaf

node holds a distinct shard and operates only on its shard.

Thus, the entire query processing is fully parallelized across

leaf nodes [16], [60]. At each leaf node, each term’s compressed

posting list resides in memory, and relevant posting lists are

fetched and decompressed for a given user query.

Then, proper set operations are performed according to the

query type. For instance, if the query is "this OR that" (Union

query) in the Figure 1(a), posting lists for each term are merged

to perform a union operation, resulting in docIDs of 0, 1, and

2. If the query is "this AND is" (Intersection query), docIDs

that appear in both posting lists are chosen to perform an

intersection operation, which is 1 and 2. For union, a simple

merge sort suffices as the posting lists are already sorted. For

intersection, a set of common documents in the two input

posting lists are returned through membership testing (i.e., for

each docID in the posting list A check if the docID exists in the

other posting list B). When the sizes of the posting lists vary

greatly, Small-versus-Small (SvS) intersection algorithm [25]

is used for efficiency. This algorithm performs a set operation

starting from the smallest two lists, hence reducing the total

number of comparisons in membership testing.

The ranking is necessary to sort out the most relevant

documents. Modern search engines often use a multi-stage

ranking algorithm to first retrieve candidate documents, which

are re-ranked in the next stage to improve the quality of search

while satisfying a tight constraint of response time [27], [47]–

[49], [51]. The first stage usually adopts a simple bag of words,

a scoring function for fast retrieval of top-k candidates. In

this work, we adopt the Okapi BM25 (Best Matching) ranking

function, which is used by many production search engines [55].

The relevance score of document D in BM25 for a given query

Q containing terms qi, ..., qn is as follows:

score(D,Q) =

n∑

i=1

IDF(qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b+ b · |D|
avgdl

)

IDF(qi) = ln (
N − n(qi) + 0.5

n(qi) + 0.5
+ 1)

Note that the query-score of a document for a given query is

the sum of term-scores for all terms contained in the query.

The term frequency (tf) f(qi, D) represents the number of

times a query term qi appears in document D. The term |D|
and avgdl means the length of document D and the average

document length in the document corpus, respectively. k1
and b are constants usually chosen as k1 ∈ [1.2, 2.0] and

b = 0.75. IDF(qi), or inverse document frequency of the

query term qi, measures the rareness of a term across the

document corpus. In a nutshell, as the term appears more

frequently in a relatively short document and as the term is

rarer throughout the document corpus, the term has a greater

impact on the overall score of the document. In the second

stage, various sophisticated re-ranking algorithms are applied,

possibly over multiple passes [28], [31], [46]. Recently, neural

ranking models [27], [47], [49] have been introduced, which

further refine the results of the first stage. Thus, BOSS leaves

this second, re-ranking stage to software, while covering all

the prior stages up to the first top-k candidate retrieval stage.

C. Memory Capacity Scaling for Inverted Index Search

Scaling Memory Channels. With an ever-growing volume

of contents on the web, the demands for additional memory

CPU

DRAM DIMM

SCM

DIMM

Memory Controller

SCM

DIMM
⋯

Memory node

SCM

DIMM

Memory Controller

SCM

DIMM
⋯

SCM

DIMM

Memory Controller

SCM

DIMM
⋯

Memory nodeMemory node

scalable, byte-addressable

interface (e.g., CXL)

⋯ ⋯

Fig. 2. SCM-based pooled memory architecture

capacity in data centers are stronger than ever [42]. One

straightforward approach to scaling memory capacity is scale-

out by adding more CPU sockets, which provide more DRAM

bandwidth and capacity. However, this accompanies a super-

linear increase in the system cost with more CPU cores [50],

[75]. To obtain 10 TB of memory, we need a few tens of

CPU sockets, assuming each CPU socket can hold up to a few

hundreds of GBs of DRAM.

The SCM-based memory system can alleviate this problem

of an increased hardware cost as it can accommodate the same

capacity with much fewer CPU sockets. For example, Intel

Optane DCPMM requires only one-eighth of the CPU sockets

compared to the DDR4 DRAM-based memory system. For the

same capacity of 10 TB, we only need 4 CPU sockets assuming

a single socket has six memory channels, and a 512GB Optane

DCPMM is attached to each channel.

SCM-based Pooled Memory. SCM-based pooled memory

provides a very cost-effective option for scaling memory

capacity. Figure 2 shows an example of SCM-based pooled

memory architecture. A memory pool consists of multiple

memory nodes, each of which is comprised of multiple SCM

DIMMs with a memory controller. The memory nodes are

connected to one or more CPU sockets via a memory-semantic

cache-coherent interconnect such as CXL [5] and Gen-Z [7].

We can place as many memory nodes as we want in a single

memory pool for memory capacity scaling. A performance

issue might arise as the number of memory nodes increases,

as they all share the same link to the host CPU with a fixed

bandwidth (e.g., 64 GB/s for a single CXL link), reducing the

memory bandwidth-to-capacity ratio.

D. Hardware Acceleration of Inverted Index Search

Commodity CPUs and GPUs are not an ideal platform

for executing inverted index search [34]. Since the memory

hierarchy of CPUs is originally designed to boost performance

by exploiting data reuse, it becomes a source of inefficiency as

accessing an inverted index features very little data reuse. GPU-

based acceleration of inverted index search is also challenging

due to the limited memory capacity (only up to tens of GBs)

of a modern GPU. This incurs a significant overhead for

transferring data between the host CPU memory and the

GPU memory over a narrow PCIe channel. Thus, hardware

accelerators with a custom memory hierarchy have emerged

as a viable alternative to those commodity platforms [34],

[69]. Among related works, IIU [34], a specialized hardware

architecture for processing essential operations of inverted index

search, including decompression, set operations (intersection,

union), and scoring, is the most relevant one. The main

limitation of IIU is that it results in suboptimal performance on

SCM-based memory systems, a cost-effective way to meet the

large capacity requirements for a large-scale search. Specifically,

i) IIU’s intersection incurs frequent random memory accesses

with its binary-search-based intersection algorithm, and ii) its

union algorithm ends up retrieving much more data from the

memory than required without a pruning mechanism. Finally,

IIU only supports a very specific compression scheme that is

tied to its hardware design, which limits its applicability. BOSS,

however, carefully addresses the limitations of IIU and enables

the efficient hardware-accelerated search on a cost-efficient

SCM-based memory system.

III. STRATEGIES FOR BANDWIDTH SAVINGS IN BOSS

The primary design objective of BOSS is bandwidth effi-

ciency for both SCM devices and the shared interconnect to the

host CPU. Existing accelerators for inverted index search, such

as Pinaka [69] and IIU [34], assume high-bandwidth DRAM-

based memory systems, which would perform sub-optimally

on the SCM-based pooled memory. Efficient utilization of the

scarce memory bandwidth is a key differentiator of BOSS

from the existing accelerators. We will discuss high-level

strategies for saving the shared interconnect bandwidth to the

CPU (Section III-A) and saving the SCM device bandwidth

(Section III-B). The implementation of these strategies is

described in greater detail in Section IV.

A. Saving Host Interconnect Bandwidth Consumption

Near-data Processing. BOSS is a near-data processing archi-

tecture where an inverted index search is performed right next

to the SCM DIMMs, not on the host CPU. Thus, BOSS can

fully exploit the internal bandwidth of the SCM DIMMs of the

same memory node. It contrasts with a single large accelerator

deployed on the host side, which can fetch data only as much

as the bandwidth of the shared interconnect regardless of the

number of aggregated memory nodes in the memory pool.
Hardware Support for Top-k Selection. Existing accelera-

tors [34], [69] do not cover the top-k selection operation in

their computing units. Instead, they only perform set operations

for the inverted index and store the results in the host memory,

leaving the task of top-k selection to the host CPU. If deployed

on the SCM-based pooled memory, these host-side accelerators

output a scored, yet unsorted, list of documents in memory,

which should be transferred back to the host CPU for sorting

and top-k selection. By integrating top-k selection logic into

its computing units, BOSS greatly reduces the volume of the

intermediate results that need to be read by the CPU. The top-k

list is just a tiny fraction of the entire inverted index in the

pooled memory. k is usually small since most users browse only

the first few pages of search results [27], [38], [48]. This enables

the memory pool to scale-out further without introducing a

performance bottleneck of the shared interconnect.

B. Saving SCM Device Bandwidth Consumption

Early Termination. The existing accelerators [34], [69] con-

sume a large amount of DRAM bandwidth for query serving

0

2

4

6

8

10

sparse dense sparse dense 0.1 0.3 zipf

uniform cluster outlier

C
o

m
p

re
s
s
io

n
 r

a
ti
o

ClueWeb12 CC-News

BP VB OptPFD S16 S8b Hybrid

Fig. 3. The compression ratio of several schemes with synthetic datasets and
real-world datasets. Higher is better. "Hybrid" applies the best compression
scheme for each posting list for the entire dataset. Star indicates the best
compression scheme for each dataset.

as they exhaustively score all the documents that satisfy the

query conditions. However, early termination (ET) techniques

allow us to skip a large portion of the documents for scoring

that satisfy certain criteria. The key idea of ET is that, if a

document has no chance to get into the final top-k result, we

can skip the evaluation of this document. More specifically, it

estimates an upper-bound query-score of a document and skips

it if the upper-bound is smaller than the smallest query-score

in the current top-k documents (which we call current cutoff).

ET techniques are especially effective for OR queries, which

often have redundant computation. BOSS integrates ET into its

hardware pipeline for a union at two different points: (i) before

fetching compressed data and (ii) before scoring documents.

The former shares similarity to BlockMaxWAND [30] and

interval-based pruning [24] to estimate the score upper-bound

at a block level. In contrast, the latter takes WAND [21], which

estimates the upper-bound query-score at a document level.

Multi-term Query Processing Optimization. Supporting

a multi-term query (i.e., processing more than two terms)

efficiently in hardware is crucial to reduce bandwidth usage.

Pinaka [69] uses a naïve merge tree to perform multiple set

operations at once. For an intersection query with multiple

terms, it is not an effective solution. As Pinaka uses a simple

merge, it needs to load the posting lists for all the terms

constituting a query. However, performing iterative intersections

using the Small-versus-Small (SvS) algorithm reduces the size

of the posting list as an intersection operation always take

a common subset of the two original posting list. Unlike

Pinaka, IIU [34] adopts the SvS algorithm for the multi-

term intersection query. However, it generates unnecessary

memory accesses to load/store intermediate data. Instead, BOSS

implements a pipelined intersection that performs multiple

intersections at once, obviating the need for storing intermediate

data in memory. This effectively reduces the wasted bandwidth

for accessing both posting lists and intermediate data.

Programmable Decompression Module. Figure 3 compares

the compression ratio of seven synthetic datasets using five

different compression schemes implemented with [6]: BP [40],

VB [26], OptPFD [68], S16 [73], S8b [14]. We also apply com-

pression schemes on two real-world datasets, ClueWeb12 [3]

and CC-News [4]. We use a hybrid approach, which applies the

best compression scheme for each posting list for the real-world

datasets. Since OptPFD outperforms PFD, we only consider

the former. All the synthetic data streams are comprised of

(b) BOSS Core architecture

(a) NDP architecture on SCM-based memory pool

Block Fetch

Module

Top-k

Module

byte-addressable,

coherent interface

(e.g., CXL)

DRAM DIMM

CPU

⋯

Set of

Decompression

Modules

Set of

Scoring

Modules

Intersection

Module

Union

Module

⋯
SCM

DIMM

SCM

DIMM

Memory Controller

⋯
SCM

DIMM

SCM

DIMM

Memory Controller

⋯

BOSS

Core

Memory Interface

Command

Queue

Core

Query Scheduler

TLBMAI

Fig. 4. Overall structure of BOSS

10M integers. We uniformly pick integers over a given range

which is from 0 to 228 − 1 for sparse and from 0 to 226 − 1
for dense to make uniform streams. Cluster streams also

consist of uniformly picked integers but from randomly chosen

clusters, not from the whole range. For outlier streams, we

pick integers following the normal distribution with a mean of

25 and a standard deviation of 20 but with 10% and 30% of

outlier values. The distribution of zipf stream follows Zipf’s

law [12]. The figure shows that the best compression scheme

differs depending on the characteristic of the input stream. To

achieve the highest compression ratio, BOSS supports various

compression schemes by dynamically re-configuring part of

its datapath inside the decompression module. This approach

is hardware-efficient as it reuses the same hardware primitives

for executing different decompression schemes. Furthermore,

a new decompression scheme can also be supported if it can

be expressed by composing those primitive units.

IV. DESIGN OF BOSS

A. Overview

Overall Structure. Figure 4 shows the system architecture

of BOSS. We design BOSS to handle the whole inverted

index search pipeline except for the final re-ranking stage

which will be handled in software. BOSS is placed in the

memory controller of each memory node and consists of several

BOSS cores and peripherals. When a search query arrives from

the host CPU, BOSS first buffers the query in its command

queue. The query scheduler is in charge of assigning queries

to BOSS cores. Once scheduled, the cores in BOSS perform

pipelined execution of fetching posting lists, decompression,

set operation, scoring, and top-k selection. Figure 4(b) depicts

the dataflow within a BOSS core. If BOSS core needs to

access SCM memory during query processing, Memory Access

Interface (MAI) handles all memory requests including address

translation through a local TLB. Note that no remote access is

necessary as a BOSS core operates only on the shard in the

local node. Finally, the top-k results are delivered to the host

via the shared, byte-addressable interconnect.
Index Structure and Per-block Metadata. The inverted index

is a sorted list of posting lists in the lexical order of the indexed

terms. Each element of the posting list is composed of a tuple

of docID and term frequency (tf) for BM25 scoring. Deltas

(also known as d-gaps) are computed between two consecutive

docIDs, and the deltas, instead of raw docIDs, are compressed

for compression efficiency [65]. We use the hybrid approach,

to minimize the space overhead. A posting list is divided into

blocks of 128 values except for Simple16, which has a variable

number of values per block according to their distribution. Each

posting list maintains its own record of metadata for efficient

skipping and decompression. For efficient block skipping, it

holds the first (4B) and the last (4B) uncompressed docID of

the block, the maximum term-score (4B) in the block, and the

address offset of the compressed block (4B). For decompression,

it contains the number of elements in the block (7 bits), encoded

bit-width (5 bits), and the offset of the first exception value and

index (12 bits). In total, the size of the metadata per block is

19B. This information is used by various compression schemes

supported by BOSS.

B. BOSS Query Execution Flow

BOSS supports two types of queries (i.e., union and

intersection) and handles the query differently depending on

the query type. Note that a more complex (mixed) query can

be created by composing them. When the two types of queries

are mixed, BOSS executes the query according to the priority

of the set operation. In what follows, we describe the execution

flow of each query type.

Union Query. The union module supports a 4-way merge,

and the BOSS core processes up to 4 terms for a union at

once. Union of more than 4 terms is processed using multiple

BOSS cores. Thus, there is no iterative loop within a single

core when processing a union query. The block fetch module

fetches block streams of all the terms being processed together.

Block skipping is applied to save SCM bandwidth by inspecting

the metadata of individual blocks. Once blocks are fetched,

the BOSS core subsequently performs decompression, union,

scoring, and top-k selection to generate the outcome.

Intersection Query. Unlike a union query the BOSS core

processes only a pair of terms at a time for an intersection. For

a 3- or 4-term intersection query, the BOSS core iteratively

fetches, decompresses and performs intersection. For example,

for a 3-term intersection query with terms A, B, and C, the

BOSS core first computes the instruction of two posting lists for

terms A and B. Then, the intersection of two posting lists (A∩B)

is fed back to the block fetch module (Figure 4(b)). The block

fetch module fetches blocks for term C to compute intersection

with A∩B. The rest of the process (decompression, intersection,

scoring, top-k) is the same as a 2-term intersection query. This

execution flow significantly improves fetching efficiency. We

discuss this block skipping mechanism in greater detail in

Section IV-C (Block Fetch Module).

Mixed Query. For a mixed query having both unions and

intersections, BOSS performs intersections first. For example,

for a 3-term mixed query A∩(B∪C), the BOSS core performs

two intersections first and then a union between two interme-

diate results ((A∩B)∪(A∩C)). This is a decision of BOSS for

bandwidth and storage efficiency for intermediate results as

1 … 133sea:

animal: 7…106

56myth ∩ of:

lake: 13 …. 139

145 missouri:

foodtruck: 10 … 250

27 …. 292

a block of the posting list a docID upper-bound term-score

3.3

2.1

(a) (b) (c)

3.3 + 2.1 < 7.0 (cutoff)

1

2

Fig. 5. Examples of block fetch operations: (a) animal ∩ sea, (b) myth ∩ of
∩ lake, (c) missouri ∪ foodtruck

an intersection always yields a smaller posting list than the

original input posting lists.

C. BOSS Core

This section explains the details of individual building

blocks of the BOSS core. As shown in Figure 4(b), it

includes the following six modules: the block fetch module,

the decompression module, the intersection module, the union

module, the scoring module, and the top-k module.

Block Fetch Module. The block fetch module selectively

fetches candidate blocks from the posting lists of the given

terms to reduce the volume of block loads. The candidate blocks

are blocks that can contain candidate documents, ones that

satisfy the query condition and can potentially be included in

the final top-k outcome. For intersections, candidate documents

should exist in all input posting lists; for unions, it suffices for

them to exist in any of the posting lists.

For an intersection query, there is an overlap check unit,

which checks the query condition. For each block, the overlap

check unit inspects the block metadata (the first and the

last docID fields in particular) to check an overlap with the

other input posting list. Figure 5(a) and (b) illustrate running

examples of this overlap checking operation. Figure 5(a)

shows an intersection between animal and sea. As the block

from animal overlaps with the block of sea, these blocks are

considered as candidate blocks and loaded. Figure 5(b) shows

an intersection of three terms: myth, of and lake. Since this

3-term query is processed in a pipelined manner, intermediate

result docIDs (56 and 145 in this example) from an intersection

of myth and of are fed back to the block fetch module. Since the

next block from term lake overlaps with one of the intermediate

results (i.e., 56), this block is considered as a candidate block.

Unlike an intersection query, the query condition for union

is satisfied by all documents included in the input posting lists.

Thus, the query condition cannot reduce the volume of block

loads for unions. Instead, BOSS applies an early termination

(ET) algorithm inspired by BlockMaxWAND [30] and interval-

based pruning [24]. To be considered for inclusion in the final

top-k outcome, a document must have a higher score than

the current cutoff to become a candidate document. Since

computing the exact score of a document requires the full

computation of the pipeline, we use the block’s maximum

term-score (or a sum of them for a multi-term query) as an

upper-bound of the exact score. This criterion is examined

by a score estimation unit within the block fetch module.

It calculates the upper-bound query-score of a document by

summing the maximum term-scores of the blocks that overlap

B
it
s
tr

e
a

m
B

u
ff

e
r

LUT

AND +

>>

<< Reg

AND

+

>> <<

Reg

…

E
x
tr

a
c
to

r

+

Reg

+

Reg

+

docID

+

(1) (2) (3) (4)

reset

Input

Output

ExceptionValue

ExceptionIndex

UseDelta

AND

+

>> <<

Reg

…

E
x
tr

a
c
to

r
E

x
tr

a
c
to

r

Fig. 6. Four-stage structure of the decompression module

with the document. This information can be retrieved by the

overlap check unit discussed in the previous paragraph. If the

upper-bound query-score is smaller than the cutoff (i.e., the

score of the lowest-rank one in the current top-k list), there is

no chance for this document to make a final top-k entry. Thus,

BOSS can safely skip this block with no candidate document.

Figure 5(c) illustrates an example of a union of two terms

(missouri and foodtruck). The score estimation unit calculates

the upper-bound query-score for the shaded block for term

foodtruck. The upper-bound query-score for those documents

whose docIDs range from 10 to 26 will be 2.1, and those

ranging from 27 to 250 will be 5.4 (=3.3+2.1). Since these

upper-bound query-scores are smaller than the current cutoff

(7.0), the shaded block will not be loaded. If the maximum

term-score for the shaded block were 4.0 (instead of 2.1),

the documents whose docIDs fall between 27 and 250 would

become candidate documents (3.3+4.0=7.3). In this case, both

the shaded block and the corresponding block from term

missouri will be loaded for the downstream execution path.

Decompression Module. Figure 6 shows the structure of the

decompression module. By analyzing multiple popular com-

pression schemes used for inverted indexes we came up with

a canonical structure composed of the following four stages,

which can flexibly support multiple compression schemes: (1)

individual payloads are extracted from the serialized bitstream;

(2) extracted payloads get manipulated differently according

to each compression scheme; (3) checks if the current payload

is an exception and handles it; (4) if the compression scheme

uses delta encoding, the payload is added to the previous

value to obtain compressed docID. The key observation is

that the datapath is nearly the same for all those compression

schemes except for the second stage. Based on this finding, the

second stage is designed to be programmable by specifying the

connections between the inputs and outputs of the primitive

units using an array of MUXes and DEMUXes. The other

three stages have a fixed datapath with configurable parameters

to reduce the hardware cost. The programming interface to

configure the decompression module is further elaborated in

Section IV-D (Configuring Decompression Module) with a

running example.

Intersection Module. The intersection module consists of three

intersection units, each of which is a simple 2-way merger

augmented with a comparator to select docIDs present in both

– –

Scoring Units

Posting Lists

max
score

big 3.3 9 8

and

rich

cat

1.7 11 9

2.1 15 11

2.4 13 12

big 3.3 13 11

and

rich

cat

1.7 16 11

2.1 15 11

2.4 13 12

and

Union

Module

2.4 13 12

rich

big

cat

3.3 15 13

2.1 16 15

1.7 21 16

big

Union

Module

rich

cat

and

11

(a)

Step (2) Step (3)Step (1)

Union

Module

Union Module

S
o
rt

e
r

P
iv

o
t

S
e
le

c
to

r

D
o
c
u
m

e
n
t

S
c
h
e
d
u
le

r

S
c
o
re

L
o
a
d
e
r

① ③ ④

Current Cutoff

②1.7 93 84 83 77

2.4 93 82 77 68

2.1 87 83 38 34

3.3 87 65 38 25

Skippable docIDs

(b)

Pivot22 sID

3.3 + 1.7 + 2.1 > cutoff (6.3) 2.4 + 3.3 + 2.1 > cutoff (6.3)

3.3 + 2.1 + 2.4 > cutoff (6.3)

Fig. 7. Structure and operations of union module. sID (smallest unevaluated
DocID) of each posting list is shown in bold, the pivot is shaded dark and
skippable docIDs are dotted.

posting lists. As the intersection unit can only process two terms

(posting lists) at once, it takes multiple passes to process 3- or 4-

term intersections by looping over fetching, decompression, and

intersection stages as discussed in Section IV-B. This iterative

process is fully pipelined, so there is neither the performance

penalty nor the need to spill the intermediate results to SCM

memory and refill them. This fine-grained pipelining for 3- or

4-term queries facilitates the operation of the block fetch unit

as it can perform more aggressive filtering of the posting list

blocks if the list of decompressed docIDs is available. Since

this information is not available during the first iteration, BOSS

selects the smaller of the two input posting lists to increase

the efficacy of the SvS membership testing.

Union Module. The union module implements the WAND

algorithm [21] in hardware. WAND effectively skips scoring

computation of those documents whose upper-bound query-

score is below the cutoff score, making it impossible for them

to be included in the final top-k outcome. It estimates the

upper-bound of query-score for the document with the smallest

docID yet to be evaluated. We denote this docID with sID. The

aforementioned upper-bound for each sID can be calculated

by summing up the maximum term-score for the entire posting

list for all terms whose sID is smaller than the term being

evaluated. The intuition here is that if sID(X) of term X is

greater than that of term Y (sID(Y)), there is a possibility

of term Y also appearing in document sID(X), but not vice

versa. Next, WAND selects a pivot, which is the smallest sID

whose upper-bound query-score is above the current cutoff.

Then, all documents whose docID is smaller than the pivot

are guaranteed to have a query-score smaller than the current

cutoff and hence can be safely skipped without scoring.

Figure 7(a) shows a running example. In this case, the pivot

is sID of and (68). Posting lists are sorted in increasing order

of sID for the sake of illustration. Here all docIDs yet to

be evaluated can only appear in the terms before the pivot

term (i.e., big and cat). Thus, their query-scores are upper-

bounded by 5.4 (=3.3+2.1). Thus, all documents whose docIDs

are below the pivot (shown in dotted gray boxes such as 25,

34, 38, and 65) can be safely skipped without calculating the

query-score. A document is scored only if it is the pivot and

actually present in other terms whose sID is smaller than the

pivot (i.e., big and cat in this example).

Figure 7(a) also shows the hardware structure of the union

module. The head value of each posting list queue (number

in bold) is equivalent to the sID of each term. Skippable

docIDs represent documents in the posting list queues whose

docID is smaller than the pivot. The union module operates as

follows. ① The sorter defines the order of sIDs. ② A score

loader fetches pre-calculated upper-bound of the query-score

for each sID from a lookup table according to the output

of the sorter. Pre-calculation is possible because this module

uses the maximum term-score of the entire posting list, but

not each block, where the unique combinations for the upper-

bound query-score are limited to 16 (=24) for 4-way unions.

Pre-calculation can be performed at the start of each query. ③

The pivot selector chooses the pivot by comparing the upper-

bound query-score of each sID with the current cutoff. ④

The document scheduler either sends the pivot to an available

scoring module or pops those documents from the queue whose

sIDs are smaller than the pivot. Figure 7(b) illustrates this

process step-by-step. In Step (1), sID of cat (11) is selected

as the pivot as the estimated upper-bound (3.3 + 1.7 + 2.1 =

7.1) is greater than the current cutoff, which is assumed to

be 6.3. Thus, the documents whose docIDs are smaller than

11 (i.e., documents 8 and 9) are discarded from the posting

list queue. In Step (2), 11 is still the pivot, and it appears in

all terms above it. Thus, this document is forwarded to the

scoring unit as shown in Step (3).

Scoring Module. BOSS adopts the widely used Okapi BM25

metric for scoring. To reduce the runtime computation overhead,

BOSS pre-computes an invariant portion of the scoring function

(shown in Section II-B) at an indexing time. Specifically, for

each document, BOSS calculates all sub-expressions of BM25

except the term frequency (tf) and stores them as metadata.

Using this metadata, three arithmetic operations (a division,

a multiplication, and an addition) are sufficient at runtime to

obtain the term score. Such pre-computation will increase the

per document metadata by 4B. The scoring module utilizes a

single fixed-point divider, a single fixed-point multiplier, and

two fixed-point adders: one for computing a term score and

the other for accumulating the term scores. The final score is

sent to the top-k module.

Top-k Module. To return the final top-k documents, BOSS

utilizes a priority queue with k entries, each of which contains

two fields: docID, query-score. The priority queue is sorted

in descending order of the query-score. When a new docID

arrives with its query-score, the top-k module inserts it into the

hardware priority queue. BOSS adopts a shift register-based

implementation [58], where a document entry is a unit of

shifting. When a new entry is inserted, it is broadcast to all the

entries in the queue for each entry to make a local decision

about whether to remain in the same position, shift left, or

load the incoming entry. By default, k is set to 1000 in BOSS.

On-chip Buffers. The BOSS core uses on-chip buffers to

hold intermediate data in the pipeline and collect the final

top-k results. Here is a list of buffers being used by individual

modules: (i) the block fetch module uses 288B to hold the

address and metadata of each posting list; (ii) the four instances

of the decompression module uses 1024B to store the target

compressed block; (iii) the intersection and union modules

use 192B for intermediate docIDs received from the previous

module; (iv) the four instances of the scoring module takes

about 2KB to temporarily hold docIDs and tf to be scored; (v)

the buffer used to store the top-k results is 8KB. In summary,

a BOSS core uses about 11KB of SRAM for on-chip buffers.

D. System-level Issues

Offloading API. BOSS exposes two intrinsic functions for

offloading: init() and search().

void init(file indexFile, file configFile)

init() sets up a communication pipe between the host and

BOSS through a memory-mapped register. It loads the inverted

index file (indexFile) from disk to SCM memory pool. It

also parses the configuration file (configFile) and sends the

encoded configuration to BOSS.

val search(string qExpression, val compType[16], size_t

nTerm, addr listAddr[16], addr resultAddr, val

resultSize)

search() is invoked to offload a query request to BOSS.

The type of query for each term is specified as a string by

the qExpression argument. A user can define a query using

query terms, round brackets, logical operators (AND/OR). To

distinguish query terms from other operators, a user needs to

put query terms in quotation marks. For example, a user can

specify a query as "A" AND ("B" OR "C"). The API parses the

received qExpression, converts it to an appropriate sequence

of set operations, and sends it to BOSS. compType specifies

the compression scheme of each posting list. This parameter

allows a user to select the best one among the pre-defined

compression schemes for each posting list. The number of

terms in the query is given by nTerm. The listAddr argument

gives a list of the starting addresses for all posting lists. The

resultAddr stores the address to return the top-k results. The

resultSize represents the size of memory reserved for storing

the results. The list size for qType, compType, and listAddr

is 16 as BOSS can support queries containing up to 16 terms.

Configuring Decompression Module. The decompression

module can be flexibly re-configured using a configuration

file. For example, Figure 8 shows a configuration for a

VariableByte (VB) compression scheme [26]. For brevity, some

components such as the current index counter or exception

index comparator are omitted. The configuration file is divided

into four sections, corresponding to the four stages of the

decompression module presented in Section IV-C. For all stages

except for Stage 2, simple parameter setting suffices. For Stage

2, the configuration file specifies the connections between the

primitive units in a similar style to the structural modeling of

a hardware description language such as Verilog and Chisel.

Figure 6 actually visualizes the datapath configuration of the

decompression module using this configuration file.

1 // Stage 1

2 // 0~15 for header encoded variable bit-length

3 Extractor[0].use = 0

4 Extractor[1].use = 1

5 Extractor[2].use = 0

6 Extractor[1].headerLength = 0

7 // Stage 2

8 RegInit(Reg, 0, reset)

9 reset := SHR(Input, 0x7)

10 wire1 := AND(Input, 0x7F)

11 wire2 := SHL(Reg, 7)

12 wire3 := ADD(wire1, wire2)

13 Reg := wire3

14 Output := wire3

15 Output.valid := wire2

16 // Stage 3

17 ExceptionValue = ExceptionIndex = 0

18 // Stage 4

19 UseDelta = 1

Fig. 8. Example configuration file for VariableByte [26]

Address Translation. An init() call sends physical-to-virtual

address mapping information of the inverted index to Memory

Address Interface (MAI) in BOSS. We assume that each

memory node in the pool has four 512GB DIMMs with 2TB

of physical address space. By using 2GB huge pages, which is

a common practice for running workloads with large memory

footprints [33], BOSS makes its local (duplicate) TLB cover

the entire physical address space with 1K entries. This prevents

a TLB miss from generating additional memory access and/or

host intervention for page table walks and so on.

Multi-term Query with More Than 4 Terms. One BOSS

core can natively support queries having up to 4 terms. When

the number of terms is greater than 4, the query terms are

divided and sent to multiple BOSS cores. The mergers in

the intersection/union module of these BOSS cores can be

flexibly connected to another merger to support multi-way set

operations. Thus, four BOSS cores can process queries with

up to 16 terms in hardware. This covers over 99% of use

cases in common full-text search engine queries like TREC

queries [43], [69], but BOSS offers ways to handle queries

with more than 16 terms. The host first divides the query into

several subqueries and allocates memory space to store the

intermediate results of the subqueries. BOSS then processes

each subquery without pruning or top-k selection, and stores

all intermediate results in the host memory. Finally, the host

processes gathered data to retrieve the final output.

V. EVALUATION

A. Methodology

Evaluation Model. We evaluate BOSS by comparing it

against Apache Lucene [1] and IIU [34]. Apache Lucene is a

production-grade search engine library driving many popular

web services such as Twitter, Instagram, Netflix, and Ebay [2],

[23]. IIU is a state-of-the-art inverted index search accelerator.

Table I summarizes the configuration we use for the three

schemes. The number of cores used for these schemes is fixed to

8. To estimate the performance of BOSS and IIU, we implement

TABLE I
HARDWARE METHODOLOGY

Host Proessor

Core Intel Xeon Scalable Processor 8280M @ 2.70GHz
L1 $ 32KB I-cache, 32KB D-cache
L2 $ 28MB (Private)
L3 $ 38.5MB (Shared, Unified)

Hosts Memory System

Organization
DDR4 2666 ECC REG, 6 channels, 384GB

Intel Apache Pass Memory, 6 channels, 1.5TB

Bandwidth
140.76 GB/s (23.46 GB/s per channel)

39.6 GB/s (6.6 GB/s per channel)
BOSS Configuration

BOSS 8 BOSS Cores @ 1.0GHz

BOSS
Core

1 Block fetch module, 4 Decompression modules,
1 Intersection module, 1 Union module, 4 Scoring modules,

1 Top-k module
BOSS Memory System

Organization SCM, 4 channels

Bandwidth
Read bandwidth: 25.6GB/s (sequential), 6.6GB/s (random) [70]

Write bandwidth: 2.3GB/s [70]

TABLE II
QUERY TYPES

Type Number of Terms Operation
Q1 1 A
Q2 2 A AND B
Q3 2 A OR B
Q4 4 A AND B AND C AND D
Q5 4 A OR B OR C OR D
Q6 4 A AND (B OR C OR D)

a cycle-level simulator integrated with DRAMSim2 [56]. We

assume Intel Optane DCPMM as a baseline memory module for

all three schemes to carefully validate its behaviors reported in

an experimental study [36], [70] by adjusting the DRAMSim2

timing parameters. For IIU, we ignore the top-k selection time.

For area and power estimation, we implement BOSS with

Chisel3 [17], compile it to Verilog, and synthesize the Verilog

code using Synopsys Design Compiler with a TSMC 40nm

standard cell library.

Workloads. We conduct experiments on two web datasets: CC-

News [4] and ClueWeb12 [3]. CC-News is a publicly available

dataset, which contains news articles crawled from news sites

through CommonCrawl. ClueWeb12 [3] is crawled by Hetrix

web crawler and made public by CMU for research purposes.

For each posting list (corresponding to each term) in the two

web datasets, we find the best compression scheme among the

five (BP [40], VB [26], OptPFD [68], S16 [73], S8b [14]) in

advance and use the best for BOSS. As for query, we randomly

select 100 1-term, 2-term, and 4-term queries (total 300 queries)

from TREC 2006 and 2005 Terabyte Track dataset [11]. As

the TREC dataset does not specify query type, we randomly

assign a type for each query, as shown in Table II.

B. Performance Results

Query Throughput Analysis Using Multiple Cores. Figure 9

and Figure 10 show query throughput of BOSS and IIU with

varying numbers of computation cores on the two datasets,

normalized on 8-thread Lucene running on a CPU with 8 cores.

In general, the query throughput of BOSS is superior over

both Luecne and IIU. BOSS with 8 cores achieves 7.54× and

8.7× average query throughput improvement over the Lucene

baseline for ClueWeb12 and CC-News datasets, respectively.

0

4

8

12

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

Q1 Q2 Q3 Q4 Q5 Q6

Single 2-Term 4-Term Geomean

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

1 Core 2 Core 4 Core 8 Core

Fig. 9. Multi-core throughput analysis (ClueWeb12) (normalized to Lucene
with 8 cores on SCM)

0

5

10

15

20

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

Q1 Q2 Q3 Q4 Q5 Q6

Single 2-Term 4-Term Geomean

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

1 Core 2 Core 4 Core 8 Core

Fig. 10. Multi-core throughput analysis (CC-News) (normalized to Lucene
with 8 cores on SCM)

0

4

8

12

IIU BOSS IIU BOSS IIU BOSS IIU BOSS IIU BOSS IIU BOSS

Q1 Q2 Q3 Q4 Q5 Q6

Single 2-Term 4-Term

B
a

n
d

w
id

th
 U

ti
liz

a
ti
o

n
 (

G
B

/s
)

1 Core 2 Core 4 Core 8 Core

Fig. 11. Bandwidth utilization (ClueWeb12)

0

4

8

12

16

IIU BOSS IIU BOSS IIU BOSS IIU BOSS IIU BOSS IIU BOSS

Q1 Q2 Q3 Q4 Q5 Q6

Single 2-Term 4-Term

B
a

n
d

w
id

th
 U

ti
liz

a
ti
o

n
 (

G
B

/s
)

1 Core 2 Core 4 Core 8 Core

Fig. 12. Bandwidth utilization (CC-News)

In contrast, the average query throughput of IIU with 8 cores

is 1.69× and 1.75× over Lucene, respectively. IIU shows a

decent performance on Q2, unlike in other queries. This is

because IIU uses a membership testing strategy, which can

skip unnecessary blocks, similar to the overlap check between

block and document used in BOSS for an intersection query.

However, contrary to BOSS, which uses a sequential search,

IIU uses binary search, which generates random access. As

the latency of random access is longer than that of sequential

0

4

8

12

16

Q1 Q2 Q3 Q4 Q5 Q6 GM Q1 Q2 Q3 Q4 Q5 Q6 GM

ClueWeb12 CC-News

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Lucene-1C IIU BOSS-exhaustive BOSS

26.7

Fig. 13. Singe core throughput analysis (normalized to Lucene with 1 core
on SCM)

0

0.5

1

Q1 Q3 Q5 Q1 Q3 Q5

ClueWeb12 CC-News

N
o

rm
a

liz
e

d
 E

v
a

lu
a

te
d

D

o
c
u

m
e

n
ts

IIU BOSS-block-only BOSS

Fig. 14. Normalized evaluated documents

access for SCM [36], IIU performs worse than BOSS.

Figure 11 and Figure 12 show the bandwidth utilization of

BOSS and IIU. For all queries, except for Q2 of ClueWeb12,

BOSS has substantially less bandwidth consumption than IIU

while maintaining a 4.7× higher query throughput than IIU.

Even for Q2 of ClueWeb12, BOSS has a higher bandwidth

efficiency than IIU as BOSS maintains a 1.7× higher through-

put. The superior bandwidth efficiency of BOSS leads to more

scalable performance than IIU as we increase the number of

cores. Due to the difference in bandwidth efficiency, IIU hits

the maximum performance with fewer cores than BOSS; as

the aggregate bandwidth of SCM devices scales in the future,

BOSS can utilize additional cores much more effectively than

IIU to yield much higher query throughput.

Detailed Performance Analysis Using Single Core. There are

two sources of bandwidth efficiency in BOSS: elimination of

intermediate data movement and early termination for reducing

computational/memory access wastes. Figure 13 shows the

normalized single core throughput of Lucene, IIU, and BOSS.

We also evaluate BOSS only with multi-term query support

and top-k module, denoted as BOSS-exhaustive, to visualize

throughput improvement due to ET algorithms integrated with

the block fetch module and the union module. For a fair

comparison, we place the same number of decompression

and scoring modules for both BOSS and IIU. Throughput

improvement over BOSS-exhaustive decreases as the number

of terms increases for union queries (i.e., Q1, Q3, and Q5). This

is because as the number of terms increases, it is less likely for

a block to share a document with all overlapping blocks. Thus,

the upper-bound of the query-score calculated by the score

estimation unit will become looser as the number of terms

increases, hence degrading its effectiveness. In contrast, the

throughput of the intersection query improves as the number of

terms increases. This is due to the pipelined intersection with

the overlap check unit. As the intersection iterates over, fewer

and fewer docIDs are compared against the next posting list.

As a result, the number of blocks overlapped with this smaller

0

0.5

1

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

II
U

B
O

S
S

Q1 Q2 Q3 Q4 Q5 Q6 Q1 Q2 Q3 Q4 Q5 Q6

ClueWeb 12 CC-News

N
o

rm
a

liz
e

d
 M

e
m

o
ry

A

c
c
e

s
s
e

s

LD List LD Score LD Inter ST Result ST Inter

Fig. 15. Normalized memory access count

0

10

20

30

40

Q1 Q2 Q3 Q4 Q5 Q6 Q1 Q2 Q3 Q4 Q5 Q6

ClueWeb12 CC-News

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

97.8
010203040

Lucene-DRAM IIU-DRAM BOSS-DRAM

010203040

IIU-SCM BOSS-SCM

GM GM

ClueWeb12 CC-News

Fig. 16. Performance comparison between Lucene, IIU, and BOSS on DRAM
and SCM (normalized to Lucene with 8 cores on SCM)

posting list is reduced so that BOSS can skip many unnecessary

blocks. Also, since several intersections are performed in the

hardware pipeline simultaneously, the following intersections’

cycles can be hidden. BOSS-exhaustive exhibits a throughput

increase over IIU in all queries except for Q1. This is due to

the lack of intra-query parallelism in BOSS. In contrast, IIU

can use all decompression and scoring units regardless of the

number of terms, whereas BOSS only uses the same number

of decompression and scoring units as the number of terms.

Figure 14 shows the normalized number of evaluated (scored)

documents of BOSS compared to IIU for single-term and

union queries. BOSS-block-only shows the effect of skipped

documents at the block fetch module and BOSS at both

the block fetch module and the union module. As shown

in Figure 14, because each module’s skip efficiency is query-

dependent, BOSS needs both modules to skip many documents.

In the figure, as the number of terms increases, the number of

skipped documents is decreased in the block fetch module. This

is because the number of false positives increases in overlapped

block selection, which prevents the block fetch module from

effectively skipping blocks. However, the union module can

reduce the scoring of unnecessary docIDs using WAND.

A reduced number of evaluated documents leads to a

decrease in the number of memory accesses. Figure 15 shows

the normalized number of memory accesses of BOSS and IIU.

A majority of memory accesses generated by the intermediate

data (LD Inter, ST Inter) and storing the final result (ST Result)

are filtered via the multi-term query optimization and the

top-k module, respectively. A reduced volume of memory

accesses for ST Result shows that BOSS decreases the shared

interconnect bandwidth consumption effectively. Thus, BOSS

does not hinder scaling-out of the memory pool. Also, BOSS

significantly reduces memory loads of posting lists (LD List)

and values for scoring (LD Score) through the skip mechanism.

Comparison with DRAM-based Systems. Figure 16 depicts

the performance comparison of Lucene, IIU, and BOSS with 8

TABLE III
AREA AND POWER OF BOSS

BOSS
Component # of Component Area Power

BOSS Core 8 8.024 mm
2 3200 mW

Command Queue 1 0.078 mm
2 0.078 mW

Query Scheduler 1 0.001 mm
2 1.96 mW

MAI (with TLB) 1 0.127 mm
2 1.20 mW

Total 8.27 mm
2 3.2 W

BOSS Core

Block Fetch Module 1 0.108 mm
2 10.5 mW

Decompression Module 4 0.093 mm
2 43.0 mW

Intersection Module 1 0.003 mm
2 0.49 mW

Union Module 1 0.011 mm
2 5.55 mW

Scoring Module 4 0.464 mm
2 200.0 mW

Top-k Module 1 0.324 mm
2 147.1 mW

Total 1.003 mm
2 406.6 mW

cores on DRAM. For DRAM evaluation, we use DDR4-2666

with 4 channels (85.2GB/s), and all throughput numbers are

normalized to Lucene running on SCM with 8 cores. The

throughput of Lucene on DRAM is almost similar to that of

Lucene on SCM; the former only outperforms the latter by

up to 15%. In general, Lucene is less affected by choice of

memory devices as its performance is mostly bottlenecked by

computation. Both IIU and BOSS achieve substantial speedup

over Lucene on DRAM-based systems (i.e., their bars are much

higher than Lucene-DRAM’s). Note that BOSS substantially

outperforms IIU in almost all cases, except for Q2 and Q6.

For those cases, IIU benefits a little more from DRAM than

BOSS since IIU generates a lot of random accesses for those

queries, and random accesses are substantially faster in DRAM

than SCM. Finally, the figure also shows that IIU and BOSS

are faster on DRAM by 3.29× and 2.31× compared to their

performance on SCM. However, DRAM may not be a practical

choice as it requires about 4× more memory nodes to secure

the same capacity.

C. Area, Power, and Energy Analysis

Area. Table III is an area breakdown for BOSS. A single

BOSS core occupies 1.00mm2, and the total area occupies

8.02mm2 with 8 BOSS cores. The scoring module’s area is

0.46mm2, which is the largest module in a BOSS core due to

fixed-point dividers required for pipelining scoring operations.

The top-k module’s area is 0.32mm2 due to shift registers

required to maintain top-k results on the fly. The area of the

remaining system components is 0.21mm2. Total area of BOSS

is 8.27mm2. The area of the remaining system components is

as small as 0.21mm2. Total area of BOSS is 8.27mm2.

Power. Table III also shows an average power breakdown of

BOSS. BOSS consumes 23.3× less power compared to the

host CPU used for our evaluation, whose average package

power was 74.8W1. This proves the superior efficiency of

BOSS over the general purpose CPU at running inverted index

search. BOSS achieves both performance improvement and

power savings.

Energy. Figure 17 shows the normalized energy consumption

of both Lucene and BOSS with multiple computation units.

1Power consumption of the CPU was measured using Intel SoC Watch [10].

0.0%

0.1%

1.0%

10.0%

100.0%

Q1 Q2 Q3 Q4 Q5 Q6 Q1 Q2 Q3 Q4 Q5 Q6

ClueWeb12 CC-News

N
o

rm
a

liz
e

d
 E

n
e

rg
y

Fig. 17. Energy consumption of BOSS with 8 cores (normalized to Lucene
with 8 cores on SCM). Y-axis is in log scale.

As shown in the figure, BOSS consumes 189× less energy

compared to Lucene. The combination of performance im-

provement and power savings yields huge energy savings. This

result shows that BOSS is an energy efficient alternative to

general purpose CPUs for inverted index search.

VI. RELATED WORK

Software Optimization Techniques for Improving Search

Query Performance. There have been various software works

for improving search query performance on CPUs [25],

[41], [53], [57], [64], [72] or GPUs [15], [29], [43], [63],

[66], [67], [76]. Most of those CPU optimization techniques

target the intersection of decompression stages. They improve

compression throughput or query performance by leveraging

SIMD instructions or cache structures. These techniques have

limited coverage of operations for inverted index search, while

BOSS performs all key operations efficiently in hardware. Also,

existing works on GPUs aim to accelerate key operations using

GPU’s high parallelism. These approaches, however, have a

substantial overhead caused by the limited memory capacity of

GPUs or frequent CPU-GPU communications. Instead, BOSS

takes the near-data-processing to eliminate such unnecessary

data movements between the host CPU and the accelerator.

Inverted Index Compression. Many compression schemes

have been proposed to mitigate its storage cost [14], [26], [68],

[77]. BP [40] calculates the minimum number of bits needed

to represent the largest value in a block and uses it to represent

all the values of the block. VB [26] utilizes multiples of 7 bits

to represent the actual “payload” and one bit (MSB) for every 7

bits to represent an integer. PFD [77] uses the smallest possible

b bits to represent a majority (e.g., 90%) of a block of 128

deltas (d-gaps) and stores the rest of the values at the end of the

compressed array. S16 [73] and S8b [14] both seek to pack as

many integers as possible within a given size of the array (32

bits for S16 and 64 bits for S8b) using various combinations

of values. BOSS can support all these compression schemes

through the reconfigurable decompression module.

Early Termination Techniques. Max-score [61] is one of

the first to skip the evaluation of documents based on their

upper-bound scores. WAND [21] is also based on max-score

but skips upper-bound calculation by pivoting. Interval-based

pruning [24] and BlockMaxWAND [30] apply a more fine-

grained approach. BOSS adopts an interval-based pruning

technique as it is better suited for building a hardware pipeline

by decoupling per-block and per-docID early termination. More

specifically, BOSS uses longer intervals to minimize the delay

between adjacent block load requests.

VII. CONCLUSION

This paper presents BOSS, the first NDP accelerator ar-

chitecture for inverted index search targeting the emerging

SCM-based memory pool with bandwidth constraints. We

apply the following strategies synergistically to overcome the

bandwidth challenges imposed by SCM-based pooled memory:

(i) skip mechanism and multi-term query optimization to

save (internal) SCM device bandwidth consumption; (ii) top-k

selection hardware module and near-data processing paradigm

to save (external) host-accelerator bandwidth over the shared

byte-addressable interconnect. According to our evaluation

using both a cycle-level simulator and synthesizable RTL

written in Chisel, BOSS achieves a geomean speedup of 8.1×
on various complex query types, while reducing the average

energy consumption by 189×, compared to Apache Lucene,

a production-grade search engine library, running on 8 CPU

cores.

ACKNOWLEDGMENTS

This work was supported in part by the National Research

Foundation of Korea (NRF) grant funded by Korea government

(MSIT)(NRF-2020R1A2C3010663) and an Institute of Infor-

mation & communications Technology Planning & Evaluation

(IITP) grant funded by the Korea government (MSIT)(No. 2021-

0-00853, Developing Software Platform for Programming of

PIM). Jae W. Lee is the corresponding author.

REFERENCES

[1] “Apache Lucene,” https://lucene.apache.org/.
[2] “Apache solr wiki,” https://cwiki.apache.org/confluence/display/solr/

PublicServers#PublicServers-PublicWebsitesusingSolr.
[3] “The ClueWeb12 dataset,” https://lemurproject.org/clueweb12/.
[4] “Common crawl - CCNEWS dataset,” http://commoncrawl.org/2016/10/

news-dataset-available/.
[5] “Compute express link,” https://www.computeexpresslink.org/about-cxl.
[6] “The fastpfor C++ library: Fast integer compression,” https://github.com/

lemire/FastPFor.
[7] “Gen-z consortium,” https://genzconsortium.org/.
[8] “Intel compute express link (cxl),” https://www.computeexpresslink.org/.
[9] “Intel optane persistent memory,” https://www.intel.com/content/www/

us/en/products/memory-storage/optane-dc-persistent-memory.html.
[10] “Intel SoC Watch,” https://software.intel.com/content/www/us/en/

develop/documentation/get-started-with-socwatch-system-bring-up-
toolkit/top.html.

[11] “Text retrieval conference (trec),” https://trec.nist.gov/.
[12] “Zipf’s law,” https://en.wikipedia.org/wiki/Zipf\%27s_law.
[13] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K. Wang,

T. Roewer, A. McPadden, O. O’Halloran, D. Chen, J. Xiong, D. Kim,
W. Hwu, and N. S. Kim, “Application-transparent near-memory process-
ing architecture with memory channel network,” in 2018 51st Annual

IEEE/ACM International Symposium on Microarchitecture, 2018.
[14] V. N. Anh and A. Moffat, “Index compression using 64-bit words,”

Software: Practice and Experience, 2010.
[15] N. Ao, F. Zhang, D. Wu, D. S. Stones, G. Wang, X. Liu, J. Liu, and S. Lin,

“Efficient parallel lists intersection and index compression algorithms
using graphics processing units,” Proc. VLDB Endow., 2011.

[16] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
hierarchy for web search,” in 2018 IEEE International Symposium on

High Performance Computer Architecture, 2018.
[17] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,

J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012,
2012.

[18] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and H. M. Levy,
“Exploring storage class memory with key value stores,” in Proceedings

of the 1st Workshop on Interactions of NVM/FLASH with Operating

Systems and Workloads, 2013.

[19] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The
google cluster architecture,” IEEE Micro, 2003.

[20] M. Becker, M. Chabbi, S. Warnat-Herresthal, U. Worlikar, S. Agrawal,
J. Bhat, J. Schulte-Schrepping, K. Bassler, P. Guenther, H. Schultze,
T. Ulas, S. Singhal, and J. L. Schultze, “Accelerated genomics data
processing using memory-driven computing,” in 2019 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM), 2019.

[21] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien, “Efficient
query evaluation using a two-level retrieval process,” in Proceedings of

the Twelfth International Conference on Information and Knowledge

Management, 2003.

[22] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-
class memory,” IBM Journal of Research and Development, 2008.

[23] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin,
“Earlybird: Real-time search at twitter,” in Proceedings of the 2012

IEEE 28th International Conference on Data Engineering, 2012.

[24] K. Chakrabarti, S. Chaudhuri, and V. Ganti, “Interval-based pruning for
top-k processing over compressed lists,” in 2011 IEEE 27th International

Conference on Data Engineering, 2011.

[25] J. S. Culpepper and A. Moffat, “Efficient set intersection for inverted
indexing,” ACM Trans. Inf. Syst., 2011.

[26] D. Cutting and J. Pedersen, “Optimizations for dynamic inverted index
maintenance,” in Proceedings of the 13th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,
1989.

[27] Z. Dai and J. Callan, “Context-aware sentence/passage term importance
estimation for first stage retrieval,” CoRR, 2019.

[28] Z. Dai, C. Xiong, J. Callan, and Z. Liu, “Convolutional neural networks
for soft-matching n-grams in ad-hoc search,” in Proceedings of the

Eleventh ACM International Conference on Web Search and Data Mining,
2018.

[29] S. Ding, J. He, H. Yan, and T. Suel, “Using graphics processors for high
performance ir query processing,” in Proceedings of the 18th International

Conference on World Wide Web, 2009.

[30] S. Ding and T. Suel, “Faster top-k document retrieval using block-max
indexes,” in Proceedings of the 34th international ACM SIGIR conference

on Research and development in Information Retrieval, 2011.

[31] J. Guo, Y. Fan, Q. Ai, and W. B. Croft, “A deep relevance matching
model for ad-hoc retrieval,” in Proceedings of the 25th ACM International

on Conference on Information and Knowledge Management, 2016.

[32] S. Hamdioui, H. Aziza, and G. C. Sirakoulis, “Memristor based memories:
Technology, design and test,” in 2014 9th IEEE International Conference

on Design Technology of Integrated Systems in Nanoscale Era, 2014.

[33] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing memory in
heterogeneous systems,” in Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming Languages and

Operating Systems, 2018.

[34] J. Heo, J. Won, Y. Lee, S. Bharuka, J. Jang, T. J. Ham, and J. W. Lee,
“IIU: Specialized architecture for inverted index search,” in Proceedings

of the Twenty-Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, 2020.

[35] S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide
nonvolatile memory technology,” MRS bulletin, 2004.

[36] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory
module,” CoRR, 2019.

[37] K. Keeton, “The machine: An architecture for memory-centric computing.”
Workshop on Runtime and Operating Systems for Supercomputers, 2015.

[38] O. Khattab and M. Zaharia, “Colbert: Efficient and effective passage
search via contextualized late interaction over bert,” in Proceedings of the

43rd International ACM SIGIR Conference on Research and Development

in Information Retrieval, 2020.

[39] H. Kim, M. P. Sah, C. Yang, and L. O. Chua, “Memristor-based multilevel
memory,” in 2010 12th International Workshop on Cellular Nanoscale

Networks and their Applications, 2010.

[40] D. Lemire and L. Boytsov, “Decoding billions of integers per second
through vectorization,” Software: Practice and Experience, 2015.

[41] D. Lemire, L. Boytsov, and N. Kurz, “Simd compression and the
intersection of sorted integers,” Softw. Pract. Exper., 2016.

[42] Y. Li, X. Tang, W. Cai, J. Tong, X. Liu, and G. Wang, “Resource-efficient
index shard replication in large scale search engines,” IEEE Transactions

on Parallel and Distributed Systems, 2019.
[43] Y. Liu, J. Wang, and S. Swanson, “Griffin: Uniting cpu and gpu in

information retrieval systems for intra-query parallelism,” in Proceedings

of the 23rd ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, 2018.
[44] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: an rdma-enabled distributed

persistent memory file system,” in 2017 USENIX Annual Technical

Conference, 2017.
[45] K. T. Malladi, F. A. Nothaft, K. Periyathambi, B. C. Lee, C. Kozyrakis,

and M. Horowitz, “Towards energy-proportional datacenter memory
with mobile dram,” in 2012 39th Annual International Symposium on

Computer Architecture, 2012.
[46] B. Mitra and N. Craswell, “An updated duet model for passage re-ranking,”

CoRR, 2019.
[47] R. Nogueira and K. Cho, “Passage re-ranking with BERT,” CoRR, 2019.
[48] R. Nogueira, W. Yang, K. Cho, and J. Lin, “Multi-stage document ranking

with BERT,” CoRR, 2019.
[49] R. Nogueira, W. Yang, J. Lin, and K. Cho, “Document expansion by

query prediction,” CoRR, 2019.
[50] M. Ogleari, Y. Yu, C. Qian, E. Miller, and J. Zhao, “String figure:

A scalable and elastic memory network architecture,” in 2019 IEEE

International Symposium on High Performance Computer Architecture,
2019.

[51] J. Pedersen, “Query understanding at bing,” In Industry Track Keynote
at the 33rd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval.

[52] A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and
R. Bez, “Scaling analysis of phase-change memory technology,” in IEEE

International Electron Devices Meeting 2003, 2003.
[53] I. Rae, A. Halverson, and J. F. Naughton, “In-rdbms inverted indexes

revisited,” in 2014 IEEE 30th International Conference on Data

Engineering, 2014.
[54] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. . Chen, R. M.

Shelby, M. Salinga, D. Krebs, S. . Chen, H. . Lung, and C. H. Lam,
“Phase-change random access memory: A scalable technology,” IBM

Journal of Research and Development, 2008.
[55] S. Robertson and H. Zaragoza, The probabilistic relevance framework:

BM25 and beyond, 2009.
[56] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate

memory system simulator,” IEEE Computer Architecture Letters, 2011.
[57] S. Shah and A. Shaikh, “Hash based optimization for faster access

to inverted index,” in 2016 International Conference on Inventive

Computation Technologies, 2016.
[58] Sung-Whan Moon, J. Rexford, and K. G. Shin, “Scalable hardware

priority queue architectures for high-speed packet switches,” IEEE

Transactions on Computers, 2000.
[59] Suock Chung, K. . Rho, S. . Kim, H. . Suh, D. . Kim, H. . Kim, S. .

Lee, J. . Park, H. . Hwang, S. . Hwang, J. . Lee, Y. . An, J. . Yi, Y. .
Seo, D. . Jung, M. . Lee, S. . Cho, J. . Kim, G. . Park, Gyuan Jin,
A. Driskill-Smith, V. Nikitin, A. Ong, X. Tang, Yongki Kim, J. . Rho,
S. . Park, S. . Chung, J. . Jeong, and S. . Hong, “Fully integrated 54nm
stt-ram with the smallest bit cell dimension for high density memory
application,” in 2010 International Electron Devices Meeting, 2010.

[60] N. Tonellotto, C. Macdonald, and I. Ounis, “Efficient query processing for
scalable web search,” Foundations and Trends in Information Retrieval,
2018.

[61] H. Turtle and J. Flood, “Query evaluation: strategies and optimizations,”
Information Processing & Management, 1995.

[62] D. Ustiugov, A. Daglis, J. Picorel, M. Sutherland, E. Bugnion, B. Falsafi,
and D. Pnevmatikatos, “Design guidelines for high-performance scm
hierarchies,” in Proceedings of the International Symposium on Memory

Systems, 2018.
[63] D. Wang, W. Yu, R. J. Stones, J. Ren, G. Wang, X. Liu, and M. Ren,

“Efficient gpu-based query processing with pruned list caching in search
engines,” in 2017 IEEE 23rd International Conference on Parallel and

Distributed Systems, 2017.
[64] J. Wang, C. Lin, R. He, M. Chae, Y. Papakonstantinou, and S. Swanson,

“Milc: Inverted list compression in memory,” Proc. VLDB Endow., 2017.
[65] J. Wang, C. Lin, Y. Papakonstantinou, and S. Swanson, “An experimental

study of bitmap compression vs. inverted list compression,” in Proceed-

ings of the 2017 ACM International Conference on Management of Data,
2017.

[66] D. Wu, F. Zhang, N. Ao, F. Wang, X. Liu, and G. Wang, “A batched gpu
algorithm for set intersection,” in 2009 10th International Symposium

on Pervasive Systems, Algorithms, and Networks, 2009.
[67] D. Wu, F. Zhang, N. Ao, G. Wang, X. Liu, and Jing Liu, “Efficient

lists intersection by cpu-gpu cooperative computing,” in 2010 IEEE

International Symposium on Parallel Distributed Processing, Workshops

and Phd Forum, 2010.
[68] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query

processing with optimized document ordering,” in Proceedings of the

18th International Conference on World Wide Web, 2009.
[69] J. Yan, Z. Zhao, N. Xu, X. Jin, L. Zhang, and F. Hsu, “Efficient query

processing for web search engine with fpgas,” in 2012 IEEE 20th

International Symposium on Field-Programmable Custom Computing

Machines, 2012.
[70] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An

empirical guide to the behavior and use of scalable persistent memory,”
in 18th USENIX Conference on File and Storage Technologies, 2020.

[71] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. J. Stewart, and
R. S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices.” Nature nanotechnology, 2008.

[72] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and W. Chen, “Efficient document
analytics on compressed data: Method, challenges, algorithms, insights,”
Proc. VLDB Endow., 2018.

[73] J. Zhang, X. Long, and T. Suel, “Performance of compressed inverted
list caching in search engines,” in Proceedings of the 17th international

conference on World Wide Web, 2008.
[74] Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen, “Multi-level cell

stt-ram: Is it realistic or just a dream?” in 2012 IEEE/ACM International

Conference on Computer-Aided Design, 2012.
[75] J. Zhao, S. Li, J. Chang, J. L. Byrne, L. L. Ramirez, K. Lim, Y. Xie,

and P. Faraboschi, “Buri: Scaling big-memory computing with hardware-
based memory expansion,” ACM Trans. Archit. Code Optim., 2015.

[76] J. Zhou, Q. Guo, H. V. Jagadish, L. Krcal, S. Liu, W. Luan, A. K. H.
Tung, Y. Yang, and Y. Zheng, “A generic inverted index framework for
similaritygpu5 on the gpu,” in 2018 IEEE 34th International Conference

on Data Engineering, 2018.
[77] M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-scalar ram-cpu

cache compression,” in Proceedings of the 22nd International Conference

on Data Engineering, 2006.

