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Abstract
The explosive expansion of Deep Neural Networks (DNN)
model size expedites the need for larger memory capacity.
This movement is particularly true for models in natural lan-
guage processing (NLP), a dominant application of AI along
with computer vision. For example, a recent extreme-scale
language model GPT-3 from OpenAI has over 175 billion
parameters. Furthermore, such a model mostly consists of
FC layers with huge dimensions, and thus has a relatively
high arithmetic intensity. In that sense, an extreme-scale lan-
guage model does not suit well to the conventional HBM
DRAM-based memory system that lacks capacity and offers
extremely high bandwidth. For this reason, we propose to pair
the neural network training accelerator with the flash-based
memory system instead of the HBM DRAM-based memory
system. To design the effective flash-based memory system,
we optimize the existing SSD design to improve the SSD
bandwidth as well as endurance. Finally, we evaluate our
proposed platform, and show that Behemoth achieves 3.65×
cost saving over TPU v3 and 2.05× training throughput im-
provement over the accelerator attached to a commercial SSD.

1 Introduction

Deep Neural Networks (DNNs) have become pervasive in
various application domains. Early DNN models demanded
only high computation, but recent models additionally require
increasing memory capacity with continued scaling of DNNs.
This is especially true for Natural Language Processing (NLP)
models [5, 18, 39, 40, 44, 54], targeting problems including
language translation [2, 50, 65], text generation [5, 53, 59] and
summarization [35, 41, 69], and sentiment analysis [18, 40].

This advent of extreme-scale NLP models (with more than
several billion parameters) is one of the most important re-
cent breakthroughs in DNNs. Transformer [66] introduced in
2017 demonstrated that neural networks could substantially
outperform existing NLP techniques, and the introduction
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Figure 1: Trends of model size scaling with large NLP models

of BERT [18] showed that the concept of training the Trans-
former language model with a large corpus could produce
a versatile language model that can be utilized for various
natural language processing tasks. Following BERT, many
Transformer-based NLP models [4,5,16–18,31,34,39,40,44,
54, 59, 66, 68, 72] have emerged. Specifically, GPT-3 [5], one
of the most recent language models, has established state-of-
the-art performance in various NLP tasks.

These NLP models explosively expand their sizes, taking
hundred billions of parameters. Figure 1 shows that the size
of the model has increased by more than 1000× over the last
two years. For example, GShard [39] from Google contains
roughly 2.4TB of parameters. This demand for memory ca-
pacity has been partly satisfied by simply supplying more
memory. However, relatively stagnant DRAM scaling cannot
keep pace with this increase in the DNN model size. There-
fore, the solution of merely augmenting the system with extra
DRAM is impractical.

It is impossible to process these models in a data paral-
lel manner on the conventional hardware because it would
require each device to hold the entire model [60]. There
are mainly two solutions to this capacity problem. The first
approach is to simply discard some computation results in
the forward path and recalculate them during the backward
path [8]. Unfortunately, this approach can incur a substantial
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amount of extra computations. The other approach is the
utilization of the model parallelism. This technique divides
the model into multiple partitions and distributes them across
multiple devices so that the system as a whole can accom-
modate the model. Following the GShard example from the
previous paragraph, at least 75 devices with 32GB of mem-
ory [27, 64] are needed to run this model. Unfortunately,
model parallelism comes with its inherent drawbacks. The
dimensions and types of layers in a model are not identical.
Thus careful load balancing of partitioned models is required.
Additionally, stalls due to dependency may arise, and extra
inter-node communication may be required to exploit pipeline
parallelism.

To tackle this capacity problem differently, we first analyze
the characteristics of those emerging NLP models. Our analy-
sis reveals that, unlike conventional models, these extreme-
scale NLP models consume huge memory proportional to
the parameter size, but do not fully utilize the bandwidth
of high-performance DRAM (e.g., high bandwidth mem-
ory (HBM)) because of a much higher degree of data reuse.
This high arithmetic intensity stems from the huge model
sizes, as parameters are shared by much more input elements.
Thus, we have identified the opportunity to use high-capacity,
low-performance NAND flash instead of low-capacity, high-
performance HBM to train these extreme-scale NLP models.

Thus, we propose Behemoth, a NAND flash-centric train-
ing accelerator targeting extreme-scale NLP models. Behe-
moth allows those NLP models to be trained in a data parallel
manner, where the training data set (not the model) is parti-
tioned across multiple devices. To satisfy the computation,
memory, and bandwidth requirements simultaneously, Behe-
moth integrates one Weight Node with multiple Activation
Nodes. Like the parameter server in a data-parallel distributed
system, Weight Node is responsible for feeding the Activation
Nodes with weight data for each layer and reducing the weight
gradients produced from them. Activation Nodes are the ac-
tual worker nodes processing each layer of the model. These
nodes are composed of a DNN-specific Compute Core and
enhanced large NAND flash memory, which can feed the core
in time and store the data generated during the training pro-
cess. The need for enhanced high-bandwidth flash memory is
engendered by large data size and high-throughput Compute
Cores. The NAND flash memory bandwidth can be scaled
by increasing the number of channels and chips. However, in
order to deliver the required performance of the DNN training
workload, for example, tens of GB/s or more, the bottleneck
caused by firmware must be resolved. Behemoth provides a
performance scalable flash memory system for DNN training
by hardware automation of the write datapath in a controller.
Furthermore, Behemoth drastically extends the endurance of
NAND by leveraging tradeoffs between retention time and
endurance (P/E cycles) of NAND flash.

To summarize, our contributions are listed as follows:

• We carefully analyze the memory capacity problem that
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Figure 2: DNN training process and dataflow. The solid line
represents the forward path in Layer 5 where A2 and A3 are
provided as inputs. The dotted line depicts the backward path
of the same layer, where A5 is retained with W5 and G7 is
received to compute G5.

arises when training extreme-scale DNN models and
identify new opportunities to leverage NAND flash de-
vices, replacing expensive DRAM devices.

• For efficient training of these models, we present Behe-
moth, a novel flash-centric training accelerator targeting
those models.

• To satisfy the bandwidth and endurance requirements of
DNN training, we propose Flash Memory System (FMS)
for Behemoth, which provides both high bandwidth and
high endurance.

2 Background and Motivation

2.1 DNN Training
DNN training is a process where a neural network model

utilizes a training dataset to improve its performance (e.g., ac-
curacy) by updating its parameters. It is essentially a repetitive
process of matrix operations. Both activations and weights,
represented as matrices, are multiplied and added in every
layer. Figure 2 describes an iteration, where activations fol-
low the path predefined by the model, repeating the forward
and the backward path. The training process is deterministic
as the process follows a predefined forward and ensuing back-
ward path. It is also iterative in that the paths are repeated
until the desired result is generated. One set of a forward and
backward path is called, surprisingly, iteration, and the set of
inputs being processed in the iteration is termed batch.

In the forward path, input activations are passed to a layer,
as shown in Figure 2. Upon receiving the activations A2 and
A3, they are multiplied with the weight W5 and generate output
activation A5. The output activation is retained in the layer for
use in the backward path and sent as input to the next layer in
the forward path. This process is repeated until the last layer.
The output of the last layer is compared with the ground truth
to calculate the error. This error is fed back to the last layer,
thus starting the backward path. In this path, the gradients
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Figure 3: Simplified view of Transformer-based models. (a) Transformer block as a whole which consists of an encoder block(left)
and a decoder block(right). Each Hn represents the nth head in the attention layer which performs matrix multiplication to
calculate a vector which is concatenated in the nth position in the resulting vector. (b) BERT-like models where only the encoder
part of the transformer is used. (c) GPT-like models where only the decoder part of the transformer is used. The main difference
from (b) is that these models typically adopt masked attention, where the attention operation can only attend tokens appearing
before the current one. (d) T5-like models where both encoders and decoders are used. Unlike those illustrated in (b) and (c) they
have cross-attention layers in the decoder modules. The final output of encoders in T5 is distributed across all cross-attention
layers in their decoders.

of both activations and weights with respect to the error are
created. Input gradients are then propagated backward, gener-
ating weight gradients and updating weights along the way.
Every DNN model training follows this pattern, regardless of
which application it targets. However, the size and structure
of the models differ by their usage. There are diverse applica-
tion domains of DNNs, such as natural language processing
(NLP), reinforcement learning (RL), computer vision (CV),
and so on. This work primarily focuses on NLP.

2.2 Extreme-scale Language Models
Many of the emerging, extreme-scale NLP models share

the same internal structure. Although the details may vary,
all of these NLP models essentially consist of Transformer
blocks shown in Figure 3(a). Specifically, some NLP models
(e.g., BERT [18], RoBERTa [44], BART [40]) are constructed
by stacking the encoder blocks of the Transformer model as
shown in Figure 3(b), and some other NLP models (e.g., GPT-
2 [53], GPT-3 [5]) are constructed by stacking the decoder
blocks of the Transformer model as shown in Figure 3(c).
Finally, as in the original Transformer, some models(e.g.,
T5 [54], Transformer-XL [17]) have stacked encoder blocks
followed by extended decoder blocks as shown in Figure 3(d).
Conceptually, encoder blocks can focus on relevant parts
of the input sentence through attention layers. As a result,
encoder-only models are mostly utilized for comprehension
tasks (e.g., sentiment analysis,question-answering). Decoder
blocks contain a masked attention layer, which is identical to
the encoder’s attention layer except that words coming after
the current position are masked. Based on such characteristics,

many decoder-only models are utilized for text generation
tasks. In models that exploit both encoder and decoder blocks,
a cross-attention layer is added to the decoders, which helps
the decoder focus on the input sentence’s related positions by
utilizing the encoder block’s output. Such models are often
utilized for tasks like translation.

One notable characteristic of these Transformer-based lan-
guage models is their gigantic sizes. For example, GPT-3
has 175 billion parameters, and the parameter size has been
scaled by over 1000× over the past two years as shown in Fig-
ure 1. This implies that the model size will scale even further
in the future. The gigantic size of these emerging language
models brings many unique challenges to the existing neural
network processing system. One of the most notable ones is
the memory capacity wall, explained in the following.

2.3 Challenges for Extreme-scale Language
Model Training

As stated above, the GPT-3 model has 175 billion parame-
ters, where each parameter is represented in the FP16 format.
In such a case, it takes 350GB of storage to store the parame-
ters for this model. The storage cost is worse in training since
training requires extra storage to buffer each layer’s output
activations as well as weight gradients. Here, the size of the
weight gradients is identical to the weights themselves and
thus cost 350GB. The sum of output activation sizes for the
GPT-3 model is 43.7GB for a single input sequence with 2048
tokens, and this linearly increases with the number of input
sequences in a single batch (i.e., batch size). For example, if
one wants to train the GPT-3 with a batch size of 32, it will
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Figure 4: Behemoth architecture

require around 2.1TB storage space.

Unfortunately, conventional DNN training platforms such
as NVIDIA GPUs or Google TPUs are equipped with HBM,
which offers very limited storage capacity. For example, a
single TPU chip, as well as a single V100 GPU only has
(a maximum of) 32GB memory space. In order to train the
GPT-3 model on these platforms, a minimum of 66 devices
are required. In terms of computation, this is not a significant
problem since training an extreme-scale model like GPT-3
in a reasonable time frame requires a very large computa-
tional capability, which often exceeds that of the 66 GPUs
or TPU chips. However, the inefficiency here is that existing
platforms such as TPU chips or GPU comes with an unnec-
essarily expensive memory system that is inadequate for the
large-scale language model training.

As shown in Figure 3, large-scale, Transformer-based lan-
guage models are mostly piles of fully-connected (FC) lay-
ers. Here, the dimensions of the FC-layers are very large.
For example, a feedforward layer in the encoder/decoder
block includes matrix multiplication between a 2048×12288
matrix and a 12288×49152 matrix to process a single in-
put. In such cases where the matrix dimensions for the
fully-connected layer are large, each value in the matrix is
reused many times, and thus the layer ends up requiring a
relatively small number of memory accesses compared to
the amount of computation (i.e., the arithmetic intensity is
low). Specifically, if the input matrix size for the FC layer
is m×n and the weight matrix for the FC layer is n× k, the
amount of required multiply-accumulate (MAC) operations
is mnk, and the amount of data that needs to be communi-
cated from/to memory is mn+ nk +mk. Thus, a larger m,
n, or k increases the ratio of mnk to mn+ nk +mk. When
m = 2048 ∗ 32,n = 12288,k = 49152 as in the feedforward
layer of the encoder/decoder block processing 32 inputs (i.e.,
sequence length = 2048, batch size = 32), the operation re-
quires 73.728 TFLOP for this matrix multiplication, and the
total amount of data transfer from/to memory is 9.26GB, as-
suming FP16 datatype. For a single TPU chip, which can per-
form 105 TFLOP per second, this matrix multiplication takes
0.7 seconds. Since the TPU v3 is equipped with two HBM
memory channels whose aggregate bandwidth is 600GB/s,
this is enough time for the chip to transfer 420 GB. How-

ever, the operation only requires 9.26GB data transfer with
the memory, grossly underutilizing the memory bandwidth.
Thus, it is critical to match the arithmetic intensity of the
models and the compute-to-memory (disk) bandwidth ratio
of accelerators. Note that the released pretrained versions of
smaller-scale Transformer-based models such as BERT and
GPT-2 do not support processing of such long sequences, thus
featuring lower arithmetic intensities.

This analysis of bandwidth underutilization indicates that
HBM is not the ideal system for this workload. A similar
argument applies for NVIDIA V100 GPU, which pairs some
112 TFLOPS with an HBM memory system having 900GB/s
aggregate bandwidth.

Our Work. Observing this significant memory bandwidth un-
derutilization, we propose to utilize the flash memory system
(FMS) to design a more cost-effective large-scale language
model training platform. However, naively replacing the
HBM memory-system to a commodity SSD is not the right
solution. In order to architect an efficient FMS for language
model training, several challenges need to be addressed. First,
an SSD has extremely-low bandwidth, especially when the
access pattern is not sequential. Even if the access pattern
is sequential, the sustained write bandwidth is often substan-
tially lower than the peak bandwidth due to SSD garbage
collection operations (GC) [33, 55]. The second challenge is
endurance. Because SSDs can only sustain a limited number
of writes, utilizing SSD as a memory for the DNN training
can significantly reduce the lifetime of SSDs. This problem
becomes exacerbated when the access pattern is not sequential
because random writes tend to increase the write amplification
factor (WAF). Our work proposes solutions for these chal-
lenges and demonstrates that FMS can be effectively utilized
for DNN training.

3 Overview of Behemoth

We design Behemoth to fully accommodate extreme-scale
DNN models in a single node enabling data-parallel training.
As illustrated in Figure 4, Behemoth consists of Compute
Core, Tensor Buffer, and FMS. Compute Core is the comput-
ing substrate for training. Control Logic in Compute Core
receives a sequence of commands from a host CPU and gener-
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ates both computation and data transfer commands by parsing
the sequence. The imminent weight and activation tensors are
kept in the DRAM buffer (named Tensor Buffer) serving as a
staging area. Upon receiving the read/write commands issued
by the control logic, FMS controller executes the commands,
retrieving and storing data in the NAND chips.

3.1 Training DNN Models on Behemoth
Most of the recent DNN frameworks employ a Python

model. This model is pre-processed on the host CPU for
analysis, extraction of layer information, and then genera-
tion of a sequence of commands that Behemoth can execute.
This command sequence is communicated to Behemoth for
execution.
Model Analysis. A user can define a DNN model to train
using the PyTorch [52] format. In this model analysis step,
information is collected about each layer’s order, arguments
used in the layer’s operation, and input/output tensors to use.
This step works similarly to the process of creating a static
computation graph in Caffe [3] and TensorFlow [1].
Generating Command Sequences. Based on the collected
model data, this step generates two types of command se-
quences: computation command sequence and direct memory
access (DMA) command sequence. The DMA command
sequence controls data transfers between Tensor Buffer and
NAND flash devices. A DMA command includes fields about
the direction of transfer (read/write), logical block address
(LBA) of the NAND device, and Tensor Buffer address. The
computation command sequence lists operation commands
to perform on Compute Core. A computation command in-
cludes fields about the type of the layer (e.g., Fully-connected
(FC), Convolution (Conv)), and the address in Tensor Buffer
where the layer’s input and output tensors will be stored. Both
command sequences are transferred to Behemoth to be saved
in the region for the non-volatile stream (NV-Stream in Sec-
tion 4.1).

3.2 Hardware Components of Behemoth
Behemoth platform consists of a single Weight Node and

multiple Activation Nodes to fully utilize the bandwidth be-
tween Tensor Buffer and NAND flash. Each node consists
of Compute Core, Tensor Buffer, and NAND flash. Weight
Node stores the weights of the target training model in the
NAND flash. The Activation Nodes create activation ten-
sors during forward propagation and store them locally in the
NAND flash for reuse during backward propagation.
Compute Core. Compute Core is not bound to a specific
DNN accelerator architecture. Thus, we assume a generic
DNN accelerator that abstracts popular commercial/academic
accelerators [9,10,24,27,58]. The DNN accelerator is special-
ized for DNN processing and performs matrix multiplication
and addition for weights and activations. It consists of a 2D
array of processing elements (PEs), where each PE can per-
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Figure 5: Example walk-through of Behemoth (a) Forward
and backward propagation (b) Weight updating

form a single MAC operation every clock cycle. Behemoth
assumes a weight stationary dataflow architecture [9], where
weights are directly loaded from Tensor Buffer and kept in
the local registers inside the PE. Every cycle, a new input is
provided to the PEs from the SRAM buffer of Compute Core.
This input is multiplied by the corresponding weight in the
PE, and the result is accumulated. Once the computation is
done, the output values are transferred to the SRAM buffer,
and eventually to Tensor Buffer.

Control Logic. Control Logic is responsible for sequencing
computation commands and orchestrating data transfers be-
tween SRAM buffer, Tensor Buffer, and FMS. Specifically,
it decodes the commands provided by the host CPU and in-
spects if this command can be scheduled (i.e., satisfies all
dependencies). If so, Control Logic dispatches this command
to Compute Core (if it is a computation command) or DRAM
Controller or FMS Controller (if it is a DMA command) to
initiate the requested DMA. Note that this is a very simple
logic, which sequences the commands in order.

Tensor Buffer. Tensor Buffer is a DRAM region that serves
as a staging area between Compute Core and FMS. The
primary role of his buffer is to smooth the traffic between
FMS and Compute Core simply. Thus, Tensor Buffer only
stores temporal data and does not require persistence.

Flash Memory System (FMS). FMS is the main storage
in Behemoth replacing the HBM in the conventional DNN
accelerators (e.g., TPU). As in SSDs, this component includes
a set of NAND chips. However, unlike the conventional SSD,
it has a hardware-based FMS controller that replaces the flash
translation layer (FTL) running on general-purpose cores.
This component interfaces with Control Logic and transfers
data to Tensor Buffer. The details of this component are
explained in Section 4.
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3.3 Example Execution Walk-Through
Figure 5(a) and (b) illustrate the process of forward and

backward propagation in Behemoth. In what follows, we
explain this process in greater detail.
Forward Propagation. Executing forward propagation in
Behemoth consists of 6 steps, which can be overlapped. While
computation is being performed on Activation Node, weights
on Weight Node are prefetched. 1 Executing a layer starts
with reading the weights stored in the NAND flash of Weight
Node into Tensor Buffer. 2 The weight tensor is broad-
casted and transferred to Tensor Buffer of Activation Node.
3 Then, the weight tensor is loaded into on-chip SRAM, and
4 computation begins. When computation is completed on

Activation Node, 5 the activation tensor stored in SRAM
is copied to Tensor Buffer. 6 Finally, the activation tensor
in Tensor Buffer is written to NAND flash for reuse during
backward propagation, and the weight tensor is deallocated
from Tensor Buffer.
Backward Propagation. Figure 5(a) and (b) show the pro-
cess of backward propagation (labeled with empty circles). It
is divided into two parts. The first part is executed for each
layer, and the second one only once at the end of each iter-
ation. Like forward propagation, all steps are pipelined and
operated in parallel. The processes of 1 and 2 are the same
as forward propagation. Once the weight tensor is received
from Weight Node, 3 Activation Node reads the activation
tensor of the corresponding layer stored in the NAND flash
during the forward propagation into Tensor Buffer. 4 Upon
completion of loading the activation tensor, both activation
and weight tensors are loaded into SRAM, and then 5 com-
putation is started. When the operation is completed, 6 the
resulting gradient tensor is stored in Tensor Buffer.

After the calculation of all layers is completed, a the final
weight gradient tensor is transferred from Activation Node
to Tensor Buffer of Weight Node. After confirming that all
weight gradients have been received, b Weight Node loads
the weight gradients into SRAM and c updates the training
results of the iteration to the weights. d The updated weights
are stored to SRAM and e written to the NAND flash for the
next iteration.

3.4 DNN Model Coverage
Behemoth targets training workloads for extreme-scale

models whose memory bandwidth requirement does not ex-
ceed the sustainable bandwidth of FMS. Suitability for other
models can be determined by analyzing their arithmetic inten-
sity. Our model analyzer can compare the arithmetic intensity
of a model with Behemoth’s compute-to-bandwidth ratio (i.e.,
FLOPS / GB/s) to check whether the model is provided with
enough bandwidth from FMS [49].

The key enabler of FMS as a storage medium of tensors is
a higher degree of data reuse resulting from long sequence
length. State-of-the-art models that are capable of handling

Table 1: DNN training data types and multi-stream support
#: Stream name

(Act. Node /
Weight Node)

Persistency Retention
Access permission

Host Behemoth

1: NV-Stream
(Training inputs / – ) Non-volatile Years Append-only

seq. write Read only

2: V-Stream
(Activations /

Interm. weights)
Volatile Minutes N/A

Read &
Append-only

seq. write

3: NV-Stream
(– / Trained weights) Non-volatile Years Read only

Read &
Append-only

seq. write

such long sequences have an extremely large size. Small-sized
models exhibit much lower arithmetic intensity, hence not be-
ing the primary target of Behemoth. For example, small NLP
models [18, 40, 53] have limited sequence length (e.g., 512).
This is much smaller than 2048 for GPT-3. Conventional vi-
sion models such as ResNet heavily utilize convolution layers.
Converting convolutions into matrix multiplications through
convolution lowering [12] results in a dimension m that is
much smaller than those of FC layers, hence failing to provide
enough bandwidth from FMS. This issue can be mitigated
to a certain extent by increasing the batch size, which in turn
increases the degree of reuse for weight parameters.

4 Architecting Specialized Flash Memory Sys-
tem (FMS) for DNN Training

As stated in Section 2, the main challenges in adopting NAND
flash memories for the language model training is the limited
bandwidth and the endurance of the NAND flash memories.
This section presents our solution to the two challenges and
explains FMS’s implementation in detail.

4.1 Improving Effective Bandwidth of FMS
Modern NAND flash memory-based storage adopts a num-

ber of flash channels and ways to increase bandwidth and
capacity. A host interface for the storage has also run a neck
and neck race with the storage’s internal bandwidth to meet
the user’s performance requirement. In terms of hardware
bandwidth of the NAND flash-based storage, the interface
speed and the number of NAND channels, as well as the
number of NAND chips attached to a channel, define the
maximum reachable speed of a NAND flash-based storage.

Technically, the bandwidth of a flash-based memory sys-
tem can be improved by utilizing a large number of NAND
channels as well as the sufficient number of NAND chips
per channel to saturate the channel bandwidth. Indeed, some
recent proposals [11, 25] demonstrate that it is possible to
build a high-bandwidth NAND system by increasing the num-
ber of channels or the channel bandwidth itself. However,
to fully utilize the high peak bandwidth of such a NAND
device, one needs to i) make writing sequential as much as
it can and ii) prevent the slow NAND firmware running on a
general-purpose processor from being a bottleneck [11, 71].

Data type Separation. Generally, it is challenging to identify
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Table 2: NAND block layout for a chip and multi-stream
attributes of Activation Node

NAND Block Layout Stream attributes
Plane       

PBN 0 1 . . . 7
Capacity P/E cycle/

Retention0 FTL Metadata 
(LBN2PBN map, PB metadata, etc)9

10 1: NV-Stream (training input) 249 GiB 50K / 
1 year92

93 2: V-Stream (activation data) 1737 GiB 2M / 
1 day 671

672 Reserved blocks for bad block replacement682

a workload’s data access patterns before it is executed. How-
ever, a DNN training accelerator (or NPU) has a deterministic
data access pattern that can be statically analyzed. The DNN
training accelerator accesses three types of data, each having
a very specific characteristic as listed in Table 1.

First, Activation Node’s FMS houses two types of data:
training input data and the activation data. Here, training
input data is a set of text data used as training inputs of the
DNN model. This data is written by a host before the training
starts and then discarded once the training finishes. Activation
data are written by Compute Core of the FMS platform during
a forward path of the training and then consumed during a
backward path of the training. The data is not written or read
by the host, and the life cycle of these data is very short (in
order of seconds, or minutes at most) as they are lived only
within a single iteration.

Similar to Activation Node, FMS of Weight Node also
houses two types of data. First, it holds the final model
weights, that is only updated at the end of the training (or
after a certain number of iterations to checkpoint the interme-
diate weights), and then later read by the host CPU. Second,
it stores intermediate model weights that are updated at the
end of each iteration.

Since two data types housed in the same device (i.e., train-
ing input data vs. activation data in Activation Node; final
trained weights vs. intermediate model weights in Weight
Node) have completely different characteristics, it is benefi-
cial to separate them to two logically isolated spaces as in
multi-stream SSDs [30, 33, 55]. In particular, we employ two
streams: the non-volatile stream (NV-Stream) and the volatile
stream (V-Stream). Table 2 summarizes a block layout for a
single NAND chip and capabilities of each data stream of Ac-
tivation Node. Weight Node layout is the same, but only the
capacity and physical block number (PBN) division are differ-
ent from storing the weight result. The streams are physically
separated by block address boundary, hence able to function
as if each stream were an individual storage space, and thus
each single stream can have their own logical address space,
access permission, and allowed P/E cycle based on retention
requirement, which is determined by characteristics of the
DNN training data. This separation of different data types
enables several useful optimizations as follows.
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Figure 6: Sequential append-only writes with RR allocation

Lightweight Flash Translation Layer. Two major function-
alities of the flash translation layer (FTL) are garbage collec-
tion (GC) and wear-leveling. However, since writes to each
data for our FMS is guaranteed to be sequential, complicated
garbage collection and wear-leveling are mostly unnecessary.
Thus, we remove the FTL’s garbage collection functional-
ity and then replace the wear-leveling block allocator with a
simple round-robin block allocator shown in Figure 6. For ex-
ample, as shown in the figure, assume that FMS has four Phys-
ical Blocks (PBs), and the host writes three Logical Blocks
(LBs) sequentially during a single DNN training iteration.
During the first training iteration, FMS uses PB 0, 1, and 2
by mapping to LB 0, 1, and 2. And then, in the second train-
ing iteration, FMS allocates PBs according to Round-Robin
(RR) policy from PB 3 to PB 0, 1 for writing to LB 0, 1, 2
of the host. This simple RR block allocation policy strictly
levels wear of all NAND blocks. The utilization of this simple
wear-leveling scheme as well as the removal of the garbage
collection greatly simplified the FTL.

Hardware Automation of Write Path. Most modern com-
mercial SSD controllers adopt a read automation feature
that accelerates the read operation exploiting specialized
hardware that substitutes (part of) the read path of the SSD
firmware [11]. On the other hand, the write data path still
relies on the firmware with high overhead or is merely par-
tially replaced by hardware logic with substantial functional
restrictions [28, 70]. This is mostly because the write data
path is much more complex than the read path. For exam-
ple, the write path needs to perform many additional oper-
ations compared to the read path. Specifically, it needs to
i) reserve NAND blocks for the GC operations, ii) perform
wear-leveling to ensure that all NAND blocks are used evenly,
iii) guarantee data consistency among the internal R/W oper-
ations generated by the GC, the wear-leveling, and the user
write commands, iv) manage metadata necessary for recov-
ery from expected or unexpected power-reset, and v) handle
exceptions for P/E failures.

However, we note that our FMS’s common write data path
does not need to perform many additional operations than
the read path. It does not require a garbage collection and
utilizes a very simple wear-leveling block allocator. Metadata
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management is not on a critical path and unnecessary for tem-
porary data such as activation data and intermediate weight
data. Finally, the exception handling is a rare event. Thus, it
becomes relatively easy to automate the write data path by
utilizing specialized hardware. By doing so, it is possible to
prevent the firmware from being a bottleneck.

Figure 7 shows hardware pipeline stages for the write path
of FMS and a timing of each pipeline stage. The automated
write path is composed of (a) write command pipeline that
transfers data from Tensor Buffer to an SRAM buffer in the
FMS controller and (b) NAND program pipeline that pro-
grams data in the SRAM to NANDs. As shown in Figure 7,
we carefully design each pipeline stage to meet a memory
bandwidth requirement for DNN training. In particular, a
buffer search/invalidation and a NAND page allocation stage
of the NAND program pipeline, which was handled by the
firmware of an existing SSD product [11], have been com-
pletely replaced with FMS controller logic.

Note that the hardware pipeline does not update the meta-
data necessary for persistence. For temporary data that ac-
counts for the most portion of FMS, persistency support is
not performance-critical as the iteration can be re-executed
from the last checkpoint. For the data that needs the storage
to be persistent, a user can make an explicit request (e.g.,
flush command [48] after writes) that initiates the firmware
to ensure that the data is persistent.

4.2 Improving Endurance of FMS
The endurance of a NAND flash based storage relies on the

program and erase (P/E) cycle for NAND blocks. The P/E
operation wears the NAND block, accelerating the leakage of
the electrons in the NAND cells. Additionally, such damage
from the P/E cycles is cumulative and irreversible and gives
rise to a myriad of read error bits, which cannot be corrected
by an ECC engine of a storage controller.

FMS essentially utilizes a flash as a temporary buffer for the
activation and intermediate weights. At a glance, it may seem
like such a frequently re-programmed value will substantially
affect the lifetime of the SSDs, which are often defined as the
number of P/E cycles that a NAND cell can sustain. However,
we argue that this is not the case (and present a quantitative

analysis in Section 5.3).
Typically, each P/E cycle damages a NAND cell, and such a

damage keeps reducing the retention time of the cell. Once the
retention time falls below the guaranteed retention time (e.g.,
1 year in consumer-grade SSDs [14]), the cell is considered
having failed. At that point, the cell may not be suitable for
storing the data for a long time; however, it is likely to be
still sufficient to store the data that will only last for a few
minutes. In light of device physics, the programmed NAND
flash cells gradually lose their electrons from a floating gate
over time, and in case a cell is damaged by the repetitive
P/E cycles, the cell loses charge faster [26, 57]. However,
with the low retention requirement, the cell can still maintain
sufficient level of charges until the end of the retention time.
In fact, many studies [6, 43, 45] already demonstrated that the
SSD endurance (# of P/E cycles) is larger when the retention
requirement is relaxed. Note that the benefits of reduced
retention does not require additional hardware resources (e.g.,
more complex ECC engines or an extra over-provisioning
space).

Considering that FMS (V-Stream data) requires only a few
minutes (e.g., 5 minutes) of retention time that is almost five
orders of magnitude smaller than a typical consumer-grade
SSD, it is expected that the cell can sustain a substantially
large number of P/E cycles before a cell’s minimum retention
time to fall below a few minutes.

5 Evaluation

5.1 Methodology
We evaluate our platform’s effectiveness by i) comparing

our platform’s memory cost to conventional TPU-based DNN
training system, and ii) comparing our platform with the spe-
cialized FMS to the hypothetical platform with conventional
SSDs.

Simulation Framework. To model the performance of the
Behemoth platform, we utilize MAESTRO [36] for Compute
Core and MQSim [63] for modeling our FMS. Specifically,
we utilize PyTorch [52] to obtain the layer dimensions of the
large-scale language models, and then use that information on
MAESTRO [36] to obtain the number of cycles that Compute
Core (PE arrays with weight-stationary dataflow) needs for
the computation of a specific layer in the language model.
Then, based on this information, we generated the traces
for our FMS and fed these traces to the MQSim (modified
to support our proposed changes detailed in Section 4) to
obtain the flash memory-related statistics. Both simulators are
validated with NPU hardware RTL [9, 37] and a commercial
SSD product [13], exhibiting an average of 5% errors [32,36].

Workloads. We evaluate twelve workloads representing three
types of widely adopted transformer models. Table 3 lists
these models. As listed in Table 3, we evaluate our work with
two types of models: (a) BERT/GPT-like and (b) T5-like. We
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Table 3: DNN models evaluated with Behemoth. We use a
sequence length of 2048 (tokens) for each model.

Model Size Total act.
(GB)

Total weight
(GB) PFLOP

BERT/GPT3-like [5, 18]

1×1 44 350 2.15
1×2 88 698 4.42
1×4 175 1393 8.56
2×1 88 1395 8.56
2×2 175 2786 17.12
2×4 349 5569 34.21

T5-like [54]

1×1 40 305 0.62
1×2 80 609 1.25
1×4 160 1218 2.49
2×1 80 1218 2.49
2×2 160 2436 4.99
2×4 319 4871 9.97

enlarge the dimensions in FC layers of the models and/or
stack more encoders/decoders, respectively, for diverse com-
parison. W×D notation is defined as W -fold enlarged FC
layers dimension (width) and D times increased depth was
implemented by stacking more encoders/decoders or trans-
formers blocks. Our workloads present various Transformer-
based models. Transformer is a key enabling primitive
for DNN to advance the state-of-the-art in the domains of
NLP [4, 5, 16–18, 31, 34, 39, 40, 44, 54, 59, 66, 68, 72], image
detection [7, 19], point cloud [21], and recommendation sys-
tems [62]. All of these models can be classified into either
BERT/GPT-like or T5-like.

The rationale behind binding BERT/GPT-like models is
as follows. They do not use a combined transformer but
separately utilize encoders and decoders. While they have
certain different characteristics, such as in the computation
process, their structure is identical, as described in Figure 3.
Thus, the two systems’ total activation and weight are equal
when having the same number of parameters. The structure
of the T5-like models makes it difficult to exactly match the
number of parameters with the encoder-only or decoder-only
models. In turn, they show the different sizes of activation and
weight. The sequence length of 2048 tokens can be interpreted
as roughly 2048 words in a sequence. The sequence of 2048
tokens comprises a batch size of 1, and the activation size is
calculated for one batch.

5.2 Memory Cost Evaluation

Baseline NPU with HBM DRAM. In order to train very
large scale language models like GPT3, existing HBM-based
neural processing accelerators need to be configured in a
model-parallel manner. In such a configuration, each TPU is
assigned a portion of the model (i.e., a distinct set of consec-
utive layers). Once a neural processing accelerator finishes
the computation for the layers it is assigned to, it passes its
outputs to the other neural processing accelerator in charge of
the following layers. This model parallelism makes it possible
to train a very large model that does not fit in a single neural
processing accelerator’s HBM-based memory. One notable
drawback of this approach is the difficulty in load-balancing.

Table 4: Platform configurations for the cost evaluation of
Behemoth.

NPU Parameters
Number of cores 16 cores (52.5 TFLOPs per core)
Number of PEs 524,288
Peak throughput 840 TFLOPs

Host I/F conf. PCIe Gen4 × 32 lane [51]
Memory Parameters

Resembled TPU [27] Behemoth

Buffer conf. 16GB HBM
16GB DDR4 DRAM +

2TB NAND flash
Peak bandwidth 300GB/s 50GB/s

Compute Parameters
Parallel comp.

method Model parallelism Data parallelism

For example, training GPT-3 requires a minimum of 393GB
storage, which translates to a 24-stage pipeline assuming that
a hardware corresponding to each stage has a 16GB HBM
memory system. Depending on the nature of the model, par-
titioning the model into 24 slices in a load-balanced manner
may be very difficult, if not impossible. For the cost com-
parison, we configure an NPU resembling the structure of
TPU, as shown in Table 4. A single device here has 16 com-
pute cores, each having 52.5TFLOPS peak throughput. Each
of these cores is attached to a single, 16GB HBM memory
whose peak bandwidth is 300 GB/s. To achieve sufficiently
high throughput, multiple copies of these devices are utilized
in parallel.
Behemoth with FMS. Unlike the baseline, Behemoth plat-
form utilizes data parallelism, which enables the complete
model to be trained on a single device, and thus does not
suffer from load imbalance issues. We configure the single
device for the cost comparison to having 16 compute cores,
each having 52.5 TFLOPS peak throughput as in the baseline
NPU. However, instead of HBM, 16 computation cores in
Behemoth device share a single FMS with 2 TB capacity and
50 GB/s peak bandwidth. In addition to this device utilized as
an Activation Node (see Figure 5), there is a separate device
utilized as a Weight Node. However, since there will be many
Activation Nodes that share a single Weight Node, the cost of
the Weight Node is amortized. Note that we carefully config-
ured 16 cores to share a single FMS. To determine the number
of cores to share a FMS, we selected the maximum number
of cores that satisfies the following criteria: (a) the size of the
data fits inside our storage, and (b) the data transfer between
the FMS and compute cores can be completely hidden.
Cost Evaluation. Figure 8 demonstrates the difference of
memory cost between Behemoth and TPU v3 [27], a popular
training accelerator deployed by Google. We assumed that
the user utilizes the 432 Behemoths and 864 TPUs that are
just enough to train each workload in 10 days. For this cal-
culation, we assumed HBM device cost to be $20/GB [23],
DDR4 DRAM device cost to be $4/GB [47], and flash device
cost to be $0.67/GB. Note that the cost of Behemoth SSD,
using 128Gb V-NAND based SLC, was set as four times a
commercial SSD price (0.167$/GB) which uses 512Gb V-
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Figure 8: Memory cost comparison between TPU v3 [27] and
Behemoth. W × D in the figure illustrates that the dimension
of each layer is increased by W times and the number of layers
is increased by D times.

NAND TLC [15]. It can be seen from the figure that the
cost gap between the two systems increases commensurate
with model size. The maximum difference of $25.7M for
BERT/GPT3-like models and $7.5M for T5-like models.

5.3 FMS Evaluation
Configuration. We compare a DNN training platform utiliz-
ing BehemothFMS and the other utilizing the conventional
storage using commodity SSDs. The configuration details are
tabulated in Table 5.

Impact of FMS on Training Throughput. We compare the
training throughput of a DNN training platform utilizing Be-
hemothFMS and one that utilizes the commodity SSDs. As
shown in Figure 9, the DNN training platform with Behe-
mothFMS performance is close to the ideal case where there
is zero overhead from memory system accesses. On the other
hand, a DNN training platform with commodity SSDs often
achieves much lower training throughput in many workloads.
This is because the baseline SSD achieves limited throughput
bottlenecked by an SSD firmware. To be exact, since a write
data path of the baseline SSDs requires a minimum of 1.45µs
to write a 4KB page, a single commodity SSD device’s write
throughput is limited to about 2.75GB/s despite its high ag-
gregate channel bandwidth or external interface bandwidth.
It aggregates four SSD device’s throughput results in about
11.0GB/s bandwidth, which is substantially smaller than the
50GB/s bandwidth that Behemoth can provide. Note that the
speedup of BehemothFMS is a little lower on wider models
(e.g., 2×1, 2×2, 2×4). This is because wider models have
even higher data reuse (see Section 2), thus requiring even
less memory or storage bandwidth.

Endurance for Training Workloads. Figure 10 shows lifes-
pan of tensors that are generated during DNN training. As
shown in the figure, all tensors created during the DNN train-
ing have a lifespan of up to a single iteration period [22].
Therefore, the longest lifespan of tensors equals the retention
time necessary for the V-Stream of FMS: 41 sec. Based on
the previous studies [6, 43, 45] that demonstrate the number

Table 5: FMS and conventional storage configuration.
Storage Parameters

Behemoth FMS Baseline SSD

NAND
Configurations

2TB,
64 channels,

2 chips/channel,
1 die/chip

500GB,
16 channels,

2 chips/channel,
1 die/chip

Channel
Speed Rate

1200MT/s
(MT/s: Mega Transfers per Second [20])

NAND
Structure

128Gb SLC / die: 8 planes / die,
683 blocks / plane, 768 pages / block, 4KB page

NAND
Latency Read: 3µs, Program: 100µs, Block erase: 5ms

Buffer
Configurations

SRAM 16MB:
6MB for FTL metadata,

10MB for I/O buffer

DRAM 512GB:
FTL metadata
SRAM 8MB:

I/O buffer, GC Buffer
FTL

Schemes Block mapping Page mapping,
Preemtible GC [38]

OP ratio N/A 7%
Firmware
Latency N/A Write:

1.45µs / a page (4KB)

Contoller
Latency

Read:
1.93µs / an NVMe Cmd,

Write:
1.18µs / an NVMe Cmd

Read:
1.93µs / an NVMe Cmd

of P/E cycle of NAND can be increased by at least 40× [6]
(up-to 600× [43]) if 1-year retention is reduced to 3 days,
we also conservatively assume that the P/E cycle of our SSD
is improved by 40 times, despite our retention requirement
(i.e., less than a minute) is much shorter than three days. The
Samsung Z-SSD [13] has 50K P/E cycles, and improving its
P/E cycles by 40× results in the 2M P/E cycles. Two million
P/E cycles on 1.85TB storage for V-Stream of FMS translates
to the 3,700,000 TBW (TeraBytes Written). Considering that
Behemoth FMS can sustain up to 17.6GB/s write bandwidth
on average for T5-like models, Behemoth FMS is guaran-
teed to function for 6.6 years (i.e., 3.7M TBW / (17.6GB/s)
= 210M seconds = 6.6 years). As shown in Figure 11, this
is an even longer period than the 5-year warranty of typi-
cal commercial SSDs. Here, note that we assume the write
amplification factor (WAF) of one because Behemoth only
performs monotonic sequential writes and reads during the
entire DNN training iteration without GC operations [29] as
shown in Figure 12.

6 Related Work

Heterogeneous Memory System for Tensor Management.
Due to the memory capacity wall, researchers train the model
with a limited number of parameters and batch sizes that the
memory capacity allows, or parallelize the model by distribut-
ing the data needed for computation across multiple DNN
training devices. However, training on a small model shows
low accuracy, and the distributed learning of large models
through multiple devices is a waste of memory bandwidth
compared to memory capacity usage in several cases. To ad-
dress the memory capacity wall, several proposals [22,56,67]
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Figure 9: DNN training throughput of 432 Behemoths over various model sizes.
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Figure 11: Behemoth FMS endurance

introduce effective memory management techniques that mi-
grate tensors in a heterogeneous memory system. HALO [22]
analyzes the hotness and lifetime of tensors and constructs
an offloading schedule for each tensor, which focuses on how
to migrate and place tensors across the heterogeneous mem-
ory nodes. vDNN [56] offloads tensors to the host memory
during the forward pass and prefetches tensors from the host
memory to be sent to the GPU during the backward pass.
SuperNeuron [67] partially adopts the idea of vDNN by only
offloading/prefetching marked tensors and recomputing un-
marked tensors during the backward pass. These researches
utilize another DRAM memory as offloading media. However,
this is more of a one-time solution since the large language
model does not fit in the host main memory. Behemoth adopts
the idea of offloading and prefetching tensors according to
their lifetime and dependency, but completely overcomes the
memory capacity wall by using a dense NAND-based flash
memory system configured for the high bandwidth.

Storage-Centric Machine Learning System. Several pro-
posals [42, 46, 61, 70] use SSD as a secondary storage in
the compute core to run large-scale applications. BLAS-on-
flash [61] builds a library to achieve efficient flash memory
speed in computing machine learning algorithms (e.g., ISLE,
XML) that are used on large datasets. Cognitive SSD [42]
constructs an engine designed for unstructured data retrieval
involving DNN inference in flash memory devices. In con-

(a) BERT/GPT3-like (b) T5-like
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Figure 12: Block access pattern of DNN training workloads
running on Behemoth FMS

trast, Behemoth proposes the flash-based memory system for
the extreme-scale neural-network language models with over
hundreds of billions of parameters.

7 Conclusion
Recent DNN models are getting wider and deeper, increasing
the memory requirements for training. This trend is especially
obvious in NLP with extreme-scale models showing exponen-
tial growth in its size. However, conventional DNN training
platforms such as NVIDIA GPUs or Google TPUs provide
insufficient storage capacity, which leads to excessive cost
and memory bandwidth underutilization. To address this prob-
lem, we propose Behemoth, a flash-based memory system
for a cost-effective training platform targeting extreme-scale
DNN models. Behemoth overcomes the low-bandwidth and
endurance problem of SSDs by separating data according to
their characteristics. This enables a simplified firmware and
hardware automation of the write path, which significantly im-
proves the bandwidth. Furthermore, by exploiting the much
shorter required retention time, we also showed that the SSD
could be safely utilized for over six years. In the end, this
Behemoth flash memory system based DNN training plat-
form achieves a much smaller memory system cost than the
conventional DNN training platform utilizing HBM devices.
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