
This paper is included in the Proceedings of the 
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the 
2019 USENIX Annual Technical Conference 

is sponsored by USENIX.

Asynchronous I/O Stack: A Low-latency  
Kernel I/O Stack for Ultra-Low Latency SSDs

Gyusun Lee, Seokha Shin, and Wonsuk Song, Sungkyunkwan University;  
Tae Jun Ham and Jae W. Lee, Seoul National University;  

Jinkyu Jeong, Sungkyunkwan University

https://www.usenix.org/conference/atc19/presentation/lee-gyusun



Asynchronous I/O Stack: A Low-latency Kernel I/O Stack for
Ultra-Low Latency SSDs

Gyusun Lee†, Seokha Shin∗ †, Wonsuk Song†, Tae Jun Ham§, Jae W. Lee§, Jinkyu Jeong†

†Sungkyunkwan University, §Seoul National University
{gyusun.lee, seokha.shin, wonsuk.song}@csi.skku.edu, {taejunham, jaewlee}@snu.ac.kr, jinkyu@skku.edu

Abstract
Today’s ultra-low latency SSDs can deliver an I/O latency

of sub-ten microseconds. With this dramatically shrunken
device time, operations inside the kernel I/O stack, which
were traditionally considered lightweight, are no longer a
negligible portion. This motivates us to reexamine the stor-
age I/O stack design and propose an asynchronous I/O stack
(AIOS), where synchronous operations in the I/O path are
replaced by asynchronous ones to overlap I/O-related CPU
operations with device I/O. The asynchronous I/O stack lever-
ages a lightweight block layer specialized for NVMe SSDs
using the page cache without block I/O scheduling and merg-
ing, thereby reducing the sojourn time in the block layer. We
prototype the proposed asynchronous I/O stack on the Linux
kernel and evaluate it with various workloads. Synthetic FIO
benchmarks demonstrate that the application-perceived I/O
latency falls into single-digit microseconds for 4 KB random
reads on Optane SSD, and the overall I/O latency is reduced
by 15–33% across varying block sizes. This I/O latency re-
duction leads to a significant performance improvement of
real-world applications as well: 11–44% IOPS increase on
RocksDB and 15–30% throughput improvement on Filebench
and OLTP workloads.

1 Introduction

With advances in non-volatile memory technologies, such as
flash memory and phase-change memory, ultra-low latency
solid-state drives (SSDs) have emerged to deliver extremely
low latency and high bandwidth I/O performance. The state-
of-the-art non-volatile memory express (NVMe) SSDs, such
as Samsung Z-SSD [32], Intel Optane SSD [12] and Toshiba
XL-Flash [25], provide sub-ten microseconds of I/O latency
and up to 3.0 GB/s of I/O bandwidth [12, 25, 32]. With these
ultra-low latency SSDs, the kernel I/O stack accounts for a
large fraction in total I/O latency and is becoming a bottleneck
to a greater extent in storage access.

∗Currently at Samsung Electronics

One way to alleviate the I/O stack overhead is to allow user
processes to directly access storage devices [6, 16, 27, 28, 49].
While this approach is effective in eliminating I/O stack over-
heads, it tosses many burdens to applications. For example,
applications are required to have their own block manage-
ment layers [49] or file systems [15, 43, 49] to build useful
I/O primitives on top of a simple block-level interface (e.g.,
BlobFS in SPDK). Providing protections between multiple
applications or users is also challenging [6, 16, 28, 43]. These
burdens limit the applicability of user-level direct access to
storage devices [49].

An alternative, more popular way to alleviate the I/O stack
overhead is to optimize the kernel I/O stack. Traditionally,
the operating system (OS) is in charge of managing stor-
age and providing file abstractions to applications. To make
the kernel more suitable for fast storage devices, many prior
work proposed various solutions to reduce the I/O stack over-
heads. Examples of such prior work include the use of polling
mechanism to avoid context switching overheads [5, 47], re-
moval of bottom halves in interrupt handling [24,35], proposal
of scatter/scatter I/O commands [37, 50], simple block I/O
scheduling [3,24], and so on. These proposals are effective in
reducing I/O stack overheads, and some of those are adopted
by mainstream OS (e.g., I/O stack for NVMe SSDs in Linux).

In our work, we identify new unexplored opportunities to
further optimize the I/O latency in storage access. The current
I/O stack implementation requires many operations to service
a single I/O request. For example, when an application issues
a read I/O request, a page is allocated and indexed in a page
cache [36]. Then, a DMA mapping is made and several aux-
iliary data structures (e.g., bio, request, iod in Linux) are
allocated and manipulated. The issue here is that these opera-
tions occur synchronously before an actual I/O command is
issued to the device. With ultra-low latency SSDs, the time
it takes to execute these operations is comparable to the ac-
tual I/O data transfer time. In such case, overlapping those
operations with the data transfer can substantially reduce the
end-to-end I/O latency.

To this end, this paper proposes an asynchronous I/O
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Figure 1: I/O latency and its breakdown with various storage devices. The numbers beside each bar denote the relative fraction
of kernel time in the total I/O latency.

stack (AIOS), a low-latency I/O stack for ultra-low latency
SSDs. Through a careful analysis of synchronous, hence
latency-critical, system call implementations (i.e., read() and
fsync()) in the Linux kernel, we identify I/O-related CPU
operations that can be overlapped with device I/O operations
and modify the Linux kernel to execute such CPU operations
while the I/O device is processing a request. To further reduce
the CPU overhead, we also introduce a lightweight block I/O
layer (LBIO) specialized for NVMe-based SSDs, which en-
ables the kernel to spend considerably less time in the block
I/O layer. Our evaluation demonstrates that AIOS achieves
up to 33% latency reduction for random reads and 31% la-
tency reduction for random writes on FIO benchmarks [2].
Also, AIOS enables various real-world applications (e.g., a
key-value store, database) to achieve higher throughput. Our
contributions are summarized as follows:
• We provide a detailed analysis of the Linux kernel I/O stack

operations and identify CPU operations that can overlap
with device I/O operations (Section 2).

• We propose the lightweight block I/O layer (LBIO) special-
ized for modern NVMe-based SSD devices, which offers
notably lower latency than the vanilla Linux kernel block
layer (Section 3.1).

• We propose the asynchronous I/O stack for read and fsync
paths in which CPU operations are overlapped with device
I/O operations, thereby reducing the completion time of
the read and fsync system calls (Section 3.2 and 3.3).

• We provide a detailed evaluation of the proposed schemes
to show the latency reduction of up to 33% for ran-
dom reads and 31% for random writes on FIO bench-
marks [2] and substantial throughput increase on real-world
workloads: 11–44% on RocksDB [10] and 15–30% on
Filebench [40] and OLTP [18] workloads (Section 4).

2 Background and Motivation

2.1 ULL SSDs and I/O Stack Overheads
Storage performance is important in computer systems as
data should be continuously supplied to a CPU to not stall
the pipeline. Traditionally, storage devices have been much
slower than CPUs, and this wide performance gap has existed
for decades [26]. However, the recent introduction of modern

storage devices is rapidly narrowing this gap. For example,
today’s ultra-low latency (ULL) NVMe SSDs, such as Sam-
sung’s Z-SSD [32], Intel’s Optane SSD [12], and Toshiba’s
XL-Flash [25], can achieve sub-ten microseconds of I/O la-
tency, which is orders of magnitude faster than that of tradi-
tional disks.

With such ultra-low latency SSDs, the kernel I/O stack [11,
38] no longer takes a negligible portion in the total I/O la-
tency. Figure 1 shows the I/O latency and its breakdown for
4 KB random read and random write + fsync workloads
on various SSDs1. The figure shows that ultra-low latency
SSDs achieve substantially lower I/O latency than conven-
tional SSDs. Specifically, their device I/O time is much lower
than that of the conventional SSDs. On the other hand, the
amount of time spent in the kernel does not change across
different SSDs. As a result, the fraction of the time spent in
the kernel becomes more substantial (i.e., up to 37.6% and
35.5% for the read and write workloads, respectively).

An I/O stack is composed of many layers [17]. A virtual
file system (VFS) layer provides an abstraction of underly-
ing file systems. A page cache layer provides caching of
file data. A file system layer provides file system-specific
implementations on top of the block storage. A block layer
provides OS-level block request/response management and
block I/O scheduling. Finally, a device driver handles device-
specific I/O command submission and completion. In this
paper, we target two latency-sensitive I/O paths (read() and
write()+fsync()) in the Linux kernel and Ext4 file system
with NVMe-based SSDs, since they are widely adopted sys-
tem configurations from the mobile [13] to enterprise [33,51].

2.2 Read Path
2.2.1 Vanilla Read Path Behavior

Figure 2 briefly describes the read path in the Linux kernel.
Buffered read system calls (e.g., read() and pread() with-
out O_DIRECT) fall into the VFS function (buffered_read()
in the figure), which is an entry point to the page cache layer.
Page cache. Upon a cache miss (Line 3-4), the function

1The detailed evaluation configurations can be found in Section 4.1. Note
that all the tested NVMe SSDs feature a non-volatile write cache, hence
showing low write latency.
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1 void buffered_read(file, begin, end, buf) {
2 for (idx=begin; idx<end; idx++) {
3 page = page_cache_lookup(idx)
4 if (!page) {
5 page_cache_sync_readahead(file, idx, end)
6 page = page_cache_lookup(idx)
7 } else {
8 page_cache_async_readahead(file, idx, end)
9 }
10 lock_page(page)
11 memcpy(buf, page, PAGE_SIZE)
12 buf += PAGE_SIZE
13 }
14 }
15
16 void page_cache_readahead(file, begin, end) {
17 init_list(pages)
18 for (idx=begin; idx<end; idx++) {
19 if (!page_cache_lookup(file, idx)) {
20 page = alloc_page()
21 page−>idx = idx
22 push(pages, page)
23 }
24 }
25 readpages(file, pages)
26 }
27
28 void ext4_readpages(file, pages) {
29 blk_start_plug()
30 for (page : pages) {
31 add_to_page_cache(page, page−>idx, file)
32 lba = ext4_map_blocks(file, page−>idx)
33 bio = alloc_bio(page, lba)
34 submit_bio(bio)
35 }
36 blk_finish_plug()
37 }

Figure 2: Pseudocode for Linux kernel read path.

page_cache_sync_readahead() is called, in which miss-
ing file blocks are read into the page cache. It identifies all
missing indices within the requested file range (Line 18-19),
allocates pages and associates the pages with the missing in-
dices (Line 20-21). Finally, it requests the file system to read
the missing pages (Line 25).
File system. File systems have their own implementation of
readpages(), but their behaviors are similar to each other.
In Ext4 ext4_readpages() inserts each page into the page
cache (Line 30-31), retrieves the logical block address (LBA)
of the page (Line 32) and issues a block request to the under-
lying block layer (Line 33-34).

Linux batches several block requests issued by a thread
in order to increase the efficiency of request handling in
the underlying layers (also known as queue plugging [4]).
When blk_start_plug() is called (Line 29), block requests
are collected in a plug list of the current thread. When
blk_finish_plug() (Line 36) is called or the current thread
is context-switched, the collected requests are flushed to the
block I/O scheduler.

After issuing an I/O request to a storage device, the thread
rewinds its call stack and becomes blocked at the function
lock_page() (Line 10). When the I/O request is completed,

NVMe Queue Pairs
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bio: LBA, length, pages 

pagepagepage

request iod: sg_list, prp_list

Per-core SW Queues…

HW Queues…

request: LBA, length, bio(s) 
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NVMe
CMD

Tag

Device Driver 

…

nvme_queue_rq()

Figure 3: The overview of the multi-queue block layer. The
shaded rectangles are dynamically allocated objects.

the interrupt handler releases the lock of the page, which
wakes up the blocked thread. Finally, the cached data are
copied to the user buffer (Line 11-12).
Block layer. Figure 3 shows the overview of the multi-queue
block layer, which is the default block layer for NVMe SSDs
in the Linux kernel, and the device driver layer. In the block
layer, a bio object is allocated using a slab allocator and
initialized to contain the information of a single block re-
quest (i.e., LBA, I/O size and pages to copy-in) (Line 33).
Then, submit_bio() (Line 34) transforms the bio object
to a request object and inserts the request object into re-
quest queues, where I/O merging and scheduling are per-
formed [3, 8]. The request object passes through a per-core
software queue (ctx) and hardware queue (hctx) and eventu-
ally reaches the device driver layer.
Device driver. A request is dispatched to the device driver
using nvme_queue_rq(). It first allocates an iod object, a
structure having a scatter/gather list, and uses it to perform
DMA (direct memory access) mapping, hence allocating I/O
virtual addresses (or DMA addresses) to the pages in the dis-
patched request. Then, a prp_list, which contains physical
region pages (PRP) in the NVMe protocol, is allocated and
filled with the allocated DMA addresses. Finally, an NVMe
command is created using the request and the prp_list and
issued to an NVMe submission queue. Upon I/O completion,
the interrupt handler unmaps DMA addresses of the pages
and calls a completion function, which eventually wakes up
the blocked thread. While the above describes the basic op-
erations in the read path, the roles of the block and device
driver layers are identical in the write path.

2.2.2 Motivation for Asynchronous Read Path

Figure 4(a) summarizes the operations and their execution
times in the read path explained in Section 2.2.1. The main
problem is that a single read I/O path has many operations

USENIX Association 2019 USENIX Annual Technical Conference    605



CPU

Device

Cache 
Lookup

Cache 
Insertion BIO Submit DMA

Map

LBA Lookup 0.09μs

I/O Submit Interrupt0.30μs 0.33μs 0.72 μs 0.81μs

Page Alloc 0.19μs

Total I/O Latency (12.82μs) 
7.26μs

Request
Completion

Context
Switch

Context
Switch

0.95μs

Copy-to-user 0.21μs

I/O 
Submit

0.29 μs 0.37 μs

DMA Unmap 0.23μs

Device Time

(a) Vanilla read path

CPU

Device

Cache 
Lookup
0.30μs

Pagepool Alloc
0.016μs

LBIO Submit
0.13μs

Device Time
7.26μs

Cache 
Insertion

0.65μsDMA Map 0.29 μs

Total I/O Latency (10.10μs)

LBIO
Completion

Context
Switch

Context
Switch

0.95μs0.35μs

LBA Lookup 0.07μs Page Alloc 0.19μs Lazy DMA Unmap 0.35μs Copy-to-user 0.21μs

(b) Proposed read path

Figure 4: The operations and their execution times in the read paths during 4 KB random read on Optane SSD. (drawn to scale
in time)

that occur synchronously to an actual device I/O operation.
This synchronous design is common and intuitive and works
well with slow storage devices because in such cases, the time
spent on CPU is negligible compared to the total I/O latency.
However, with ultra-low latency SSDs, the amount of CPU
time spent on each operation becomes a significant portion of
the total I/O latency.

Table 1 summarizes the ratio of each operation to the total
kernel time. With small I/O sizes, the context switching is
the most time-consuming operation. In this case, it is possi-
ble to reduce the overhead through the use of polling [5, 47].
The copy-to-user is another costly operation but is a neces-
sary operation when file data is backed by the page cache. If
we exclude these two operations, the remaining operations
account for 45-50% of the kernel time.

Upon careful analysis of the code, we find that many of
the remaining operations do not have to be performed before
or after the device I/O time. In fact, such operations can be
performed while the device I/O operation is happening since
such operations are mostly independent of the device I/O
operation. This motivates us to overlap such operations with
the device I/O operation as sketched in Figure 4(b) (shaded
in dark gray).

2.3 Write Path

2.3.1 Vanilla Write Path Behavior

Buffered write system calls (e.g., write()) usually buffer
the modified data in the page cache in memory. When an
application calls fsync(), the kernel actually performs write
I/Os to synchronize the dirtied data with a storage device.

The buffered write path has no opportunity to overlap com-
putation with I/O because it does not perform any I/O op-
eration. On the other hand, fsync accompanies several I/O
operations due to the writeback of dirtied data as well as a
crash consistency mechanism in a file system (e.g., file system
journaling). Since fsync most heavily affects the application

Layer Action
Lines in % in
Figure 2 kernel time

Page
cache

Missing page lookup
Line 18-24 9–10.8%

Page allocation
Copy-to-user Line 11-12 4.5–12%

File
system

Page cache insertion

Line 30-35 26–28.5%
LBA retrieval
bio alloc/submit
Make request from bio

Block I/O scheduling (noop)
Line 36 10–11%

Driver
DMA mapping/unmapping
NVMe command submit

Scheduler Context switch (2 times) Line 10 25–41.5%

Table 1: Summary of operations and their fractions in kernel
time in the read path. (4–16 KB FIO rndrd on Optane SSD)

performance in the write path, we examine it in more detail.
Figure 5(a) shows the operations and their execution times

during an fsync call on Ext4 file system using ordered jour-
naling. First, an application thread issues write I/Os for dirty
file blocks and waits for them to complete. Then, the appli-
cation thread wakes up a journaling thread (jbd2 in Ext4) to
commit the file system transaction. It first prepares the write
of modified metadata (journal block in the figure) onto the
journal area and issues the write I/O. Then, it waits for the
completion of the write. Once completed, it prepares the write
of a commit block and issues the write I/O. A flush command
is enforced between the journal block write and the commit
block write to enforce the ordering of writes [45]. Hence, total
three device I/O operations occur for a single fsync call.

2.3.2 Motivation for Asynchronous Write Path

As in the case of the read path, there is also an opportunity
to overlap the device I/O operations with the computation
parts in the fsync path. As shown in Figure 5(a), the jour-
naling thread performs I/O preparation and I/O waiting syn-
chronously. Each I/O preparation includes assigning blocks
in the journal area to write on, allocating buffer pages, allo-
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Figure 6: The CDF of the block I/O submission latency in the
Linux block layer (bio) and the proposed lightweight block
layer (lbio) on Optane SSD.

cating/submitting a bio object, assigning DMA address, and
so forth. If these CPU operations are overlapped with the pre-
vious device I/O time, the total latency of the fsync system
call can be greatly reduced as shown in Figure 5(b).

2.4 Motivation for Lightweight Block Layer
The Linux kernel uses the multi-queue block layer for NVMe
SSDs by default to scale well with multiple command queues
and multi-core CPUs [3]. This block layer provides func-
tionality like block I/O submission/completion, request merg-
ing/reordering, I/O scheduling and I/O command tagging [3].
While these features are necessary for general block I/O man-
agement, they delay the submission time of an I/O command
to a storage device.

Figure 6 shows the block I/O submission latency, time from
allocating a bio object to dispatching an I/O command to a
device (denoted as bio); the figure also includes the same
measurement using the proposed lightweight block layer in
Section 3.1 (denoted as lbio). We use two I/O sizes, 4 KB
and 32 KB, to minimize and maximize the number of dy-
namic memory allocations during I/O submissions, respec-
tively. Considering that the device time for a 4 KB read is
around 7.3 µs on ultra-low latency SSDs, the amount of time
spent in the block layer is about 15% of the device time, which

is a non-negligible portion.
While block I/O submission/completion and I/O command

tagging are necessary features, request merging/reordering
and I/O scheduling are not significant. The multi-queue block
layer supports various I/O schedulers [8] but its default config-
uration is noop since many studies report that I/O scheduling
is ineffective for reducing I/O latency for latency-critical ap-
plications on fast storage devices [34, 46, 51]. I/O scheduling
can also be replaced by the device-side I/O scheduling capa-
bility [14]. The effectiveness of request merging/reordering is
also questionable in ultra-low latency SSDs because of their
high random access performance and the low probability to
find adjacent or identical block requests.

Based on these intuitions, we propose to simplify the
roles of the block layer and make it specialized for our asyn-
chronous I/O stack to minimize its I/O submission delay.

3 Asynchronous I/O Stack

The proposed asynchronous I/O stack (AIOS) consists of two
components: the lightweight block I/O layer (LBIO) and the
modified I/O stack that overlaps I/O-related computations
with the device I/O operations. This section first explains
LBIO and then explains the modified read and write paths.

3.1 Lightweight Block I/O Layer
To minimize the software overheads in the block layer, we
design a lightweight block I/O layer (or LBIO), a scalable,
lightweight alternative to the existing multi-queue block layer.
LBIO is designed for low-latency NVMe SSDs and supports
only I/O submission/completion and I/O command tagging.
Figure 7 shows the overview of our proposed LBIO.

Unlike the original multi-queue block layer, LBIO uses
a single memory object, lbio, to represent a single block
I/O request, thereby eliminating the time-consuming bio-
to-request transformation in the original block layer. Each
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lbio object contains LBA, I/O length, pages to copy-in and
DMA addresses of the pages. Containing DMA addresses
in lbio leverages the asynchronous DMA mapping feature
explained in the following sections. An lbio only supports
4 KB-aligned DMA address with I/O length of multiple sec-
tors to simplify the codes initializing and submitting block
I/O requests. This approach is viable with the assumption of
using the page cache layer. Similar to the original block layer,
LBIO supports queue plugging to batch multiple block I/O
requests issued by a single thread.

LBIO has a global lbio two-dimensional array whose row
is dedicated to each core, and a group of rows is assigned to
each NVMe queue pair as shown in Figure 7. For example, if a
system has 8 cores and 4 NVMe queue pairs, each lbio array
row is one-to-one mapped to each core and two consecutive
rows are mapped to an NVMe queue pair. When the number
of NVMe queue pairs is equal to the number of cores, lockless
lbio object allocations and NVMe command submissions
are possible, as in the existing multi-queue block layer. The
index of an lbio object in the global array is used as a tag in
an NVMe command. This eliminates the time-consuming tag
allocation in the original block layer.

Once an lbio is submitted, the thread directly calls
nvme_queue_lbio() to dispatch an NVMe I/O command.
Note that LBIO does not perform I/O merging or I/O schedul-
ing, and thus reduces I/O submission delay significantly. With-
out the I/O merging, it is possible for two or more lbio’s to
access the same logical block. This potentially happens in
the read path and is resolved by the page cache layer (see
Section 3.2). However, this does not happen in the write path
because the page cache synchronizes writeback of dirty pages.

Figure 6 shows the reduced I/O submission latency with
LBIO. On average, a block I/O request in LBIO takes only
0.18–0.60 µs, which is 83.4%–84.4% shorter latency com-
pared to that of the original block layer.

3.2 Read Path
In addition to the introduction of LBIO, our approach reduces
the I/O latency of the read path by detaching synchronous
operations from the critical path as sketched in Figure 4(b).
The following subsections describe each relocated operation
and additional work to support the relocation.

3.2.1 Preloading Extent Tree

For a read operation, retrieving LBAs corresponding to the
missing file blocks is a necessary step to issue a block request
and thus this operation should be in the critical path. Instead
of taking this step off the critical path, our proposal focuses on
reducing its latency itself. The implementation of the Linux
Ext4 file system caches logical to physical file block mappings
in memory, and this cache is called extent status tree [19].
When a mapping can be found in the cache, obtaining an LBA
takes a relatively short time; however, when the mapping is
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Figure 7: The proposed lightweight block I/O layer (LBIO).
Shaded objects are dynamically allocated.

not found, the system has to issue an I/O request to read the
missing mapping block and thus incurs much longer delay.

To avoid this unnecessary overhead, we adopt a plane sepa-
ration approach [28]. In the control plane (e.g., file open), the
entire mapping information is preloaded in memory. By doing
so, the data plane (e.g., read and write) can avoid the latency
delay caused by a mapping cache miss. The memory costs of
caching an entire tree can be high; the worst case overhead
is 0.03% of the file size in our evaluation. However, when
there is little free memory, the extent cache evicts unlikely-
used tree nodes to secure free memory [19]. To reduce the
space overhead even further, this technique can be selectively
applied to files requiring low-latency access.

3.2.2 Asynchronous Page Allocation/DMA Mapping

Preparation of free pages is another essential operation in
the read path. In the original read path, a page allocator of
the kernel performs this task, and it consumes many CPU
cycles. For example, a single page allocation takes 0.19 µs
on average in our system as shown in Figure 4(a). Similarly,
assigning a DMA address to each page (DMA mapping) takes
a large number of CPU cycles (754 cycles or 0.29 µs). Our ap-
proach is to take these operations off from the critical path and
perform them while the device I/O operation is happening.

To this end, we maintain a small set of DMA-mapped free
pages (a linked list of 4 KB DMA-mapped pages) for each
core. With this structure, only a few memory instructions are
necessary to get free pages from the pool (Pagepool Alloc
in Figure 4(b)). The consumed pages are refilled by invok-
ing page allocation and DMA mapping while the device I/O
operation is occurring. This effectively hides the time for
both page allocation and DMA mapping from the application-
perceived I/O latency as shown in the figure. Note that, when
the number of free pages in the pool is smaller than the read
request size, page allocation and DMA mapping happens syn-
chronously as in the vanilla kernel case.
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3.2.3 Lazy Page Cache Indexing

Insertion of a page into a page cache index structure is another
source of the large kernel I/O stack latency. Our approach is
to overlap this operation with the device I/O operation while
resolving the potentially duplicated I/O submissions.

In the vanilla kernel, the page cache works as a synchro-
nization point that determines whether a block I/O request
for a file can be issued or not. File blocks whose cache pages
are successfully inserted into the page cache are allowed to
make block requests (Line 31 in Figure 2), and a spinlock
is used to protect the page cache from concurrent updates.
Consequently, no duplicated I/O submission occurs for the
same file block.

However, if we delay the page cache insertion operation
to a point after submitting an I/O command to a device, it is
possible for another thread to miss on the same file block and
to issue a duplicate block request. To be exact, this happens if
another thread accesses the page cache after the I/O request
is submitted but before the page cache entry is updated.

Our solution is to allow duplicated block requests but re-
solve them at the request completion phase. Although there
are multiple block requests associated with the same file block,
only a single page is indexed in the page cache. Then, our
scheme marks other pages as abandoned. The interrupt han-
dler frees a page associated with the completed block request
if it is marked abandoned.

3.2.4 Lazy DMA Unmapping

The last long-latency operation in the read path is DMA un-
mapping that occurs after the device I/O request is completed.
The vanilla read path handles this in the interrupt handler,
which is also in the critical path. Our scheme delays this op-
eration to when a system is idle or waiting for another I/O
request (Lazy DMA unmap in Figure 4(b)).

Note that this scheme prolongs the time window in which
the DMA buffer is accessible by the storage device. This
is essentially an extended version of the deferred protection
scheme used in Linux by default [20]. Deferring the DMA
unmapping (either in our scheme or in Linux) may potentially
create a vulnerability window from a device-side DMA attack.
However, with an assumption that the kernel and the device
are neither malicious nor vulnerable, the deferred protection
causes no problem [20]. If the assumption is not viable, users
can disable the lazy DMA unmapping.

3.3 Write and fsync Path
As explained in Section 2.3.1, an fsync system call entails
multiple I/O operations, and thus it is not possible to reuse
the same scheme we proposed for the read path. For example,
by the time fsync happens, pages are already allocated and
indexed in the page cache. Instead of overlapping the I/O-
related computation with individual device I/O operation, we

focus on applying the overlapping idea to the entire file system
journaling process.

Specifically, we overlap the computation parts in the jour-
naling thread with the previous I/O operations in the same
write path. As shown in Figure 5(a), there are two I/O prepara-
tion operations: journal block preparation and commit block
preparation. Each preparation operation includes allocating
buffer pages, allocating a block on the journal area, calcu-
lating the checksum and computation operations within the
block and device driver layers. Since these operations only
modify in-memory data structures, they have no dependency
on the previous I/O operation in the same write path. Note
that, at any given time, only a single file system transaction
can be committed. While a transaction is in the middle of
commit, no other file system changes can be entangled to the
current transaction being committed. Hence, if the ordering
constraint, which allows the write of a commit block only
after the data blocks and journal blocks are made durable on
the storage media, is guaranteed, our approach can provide
the same crash consistency semantic provided by the vanilla
write path.

To this end, we change the fsync path as shown in Fig-
ure 5(b). Upon an fsync system call, an application thread
issues the writeback of dirty data pages first. Then, it wakes up
the journaling thread in advance to overlap the data block I/Os
with the computation parts in the journaling thread. The appli-
cation thread finally waits for the completion of the writeback
I/Os as well as the completion of the journal commit. While
the data block I/O operations are happening, the journaling
thread prepares the journal block writes and issues their write
I/Os. Then, it prepares the commit block write and waits for
the completion of all the previous I/O operations associated
with the current transaction. Once completed, it sends a flush
command to the storage device to make all the previous I/Os
durable and finally issues a write I/O of the commit block
using a write-through I/O command (e.g., FUA in SATA).
After finishing the commit block write, the journaling thread
finally wakes up the application thread.

When an fsync call does not entail a file system transac-
tion, it is not possible to overlap computation with I/O opera-
tion. In this case, the use of LBIO reduces its I/O latency.

3.4 Implementation

The proposed scheme is implemented in the Linux kernel ver-
sion 5.0.5. A new file open flag, O_AIOS, is introduced to use
the proposed I/O stack selectively. The current implementa-
tion supports read(), pread(), fsync(), and fdatasync()
system calls. For now, other asynchronous or direct I/O APIs
are not supported.

The LBIO layer shares the NVMe queue pairs used in the
original block layer. The spinlock of each queue pair provides
mutual exclusion between LBIO and the original block layer.
The most significant bit of a 16-bit tag is reserved to distin-
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Object Linux block LBIO

128 KB
block

request

(l)bio 648 bytes 704 bytes+ (l)bio_vec
request 384 bytes

iod 974 bytes
prp_list 4096 bytes 4096 bytes

Total 6104 bytes 4800 bytes
Statically request pool 412 KB
allocated lbio array 192 KB
(per-core) free page pool 256 KB

Table 2: Memory cost comparison

guish the two block layers. Since the NVMe SSDs used for
evaluation supports 512 or 1024 entries for each queue, the
remaining 15 bits are sufficient for command tagging.

Table 2 summarizes the memory cost of our scheme and
the original block layer. To support a single 128 KB block
request, both layers use a comparable amount of memory for
(l)bio, (l)bio_vec, and prp_list objects. However, the
original block layer requires two additional memory objects:
request and iod, and thus requires extra memory compared
to LBIO.

As for the cost of statically allocated memory, the origi-
nal block layer maintains a pool of request objects (1024
objects with 1024 I/O queue depth), which requires 412 KB
memory per core. LBIO replaces the per-core request pool
with the per-core lbio row of size 192 KB. Meanwhile, our
scheme also maintains a pool of DMA-mapped free pages.
We maintain 64 free pages for each free page pool, hence
consuming additional 256 KB memory per core.

In order to implement the AIOS fsync path, the jbd2
wakeup routine in ext4_sync_file() is relocated to the po-
sition between data block write and data block wait. The func-
tion jbd2_journal_commit_transaction() is also modi-
fied to implement our scheme. The routine to prepare a com-
mit block is moved to the position before the waiting routine
for the journal block writes. The waiting routine for data block
writes (using t_inode_list) is also relocated to the position
before the waiting for journal block writes. The routine to is-
sue commit block write I/O (i.e., submit_bh() in the vanilla
path) is split into two routines: one for allocating an lbio and
mapping DMA address, and the other for submitting an I/O
command to a device (i.e., nvme_queue_lbio()). With this
separation, AIOS can control the time to submit the commit
block I/O so that it can satisfy the ordering constraints, while
allowing the overlap of block request-related computations
(e.g., DMA mapping) with the previous I/O operations.

4 Evaluation

4.1 Methodology
We use Dell R730 Server machine with Intel Xeon E5-2640
CPU and 32 GB DDR4 memory for our experiments. For the
ultra-low latency storage devices, we evaluate both Samsung
Z-SSD and Intel Optane SSD; both integrate a non-volatile

Server Dell R730
OS Ubuntu 16.04.4

Base kernel Linux 5.0.5
CPU Intel Xeon E5-2640v3 2.6 GHz 8 cores

Memory DDR4 32 GB

Storage devices

Z-SSD Samsung SZ985 800 GB
Optane SSD Intel Optane 905P 960 GB
NVMe SSD Samsung PM1725 1.6 TB
SATA SSD Samsung 860 Pro 512 GB

Table 3: Experimental configuration
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Figure 8: FIO single-thread random read latency and through-
put with varying block sizes.

write cache, which ignores flush and FUA commands in the
block layer. We implement our proposed scheme AIOS on
Linux kernel 5.0.5, denoted as AIOS. The baseline is the
vanilla Linux kernel 5.0.5 using the Ext4 file system, denoted
as vanilla. Table 3 summarizes our experimental setup.

For evaluation, we utilize both the synthetic micro-
benchmark and real-world workloads. For the synthetic micro-
benchmark, we use FIO [2] using the sync engine with varying
I/O request sizes, I/O types, the number of threads and so forth.
For real-world workloads we utilize various applications such
as key-value store (RocksDB [10]), file-system benchmark
(Filebench-varmail [40]), and OLTP workload (Sysbench-
OLTP-insert [18] on MySQL [22]). Specifically, we run
readrandom and fillsync workloads of the DBbench [30]
on RocksDB; each representing a read-intensive case and
fdatasync-intensive case, respectively. Filebench-varmail is
fsync-intensive, and Sysbench-OLTP-insert is fdatasync-
intensive.

4.2 Microbenchmark
4.2.1 Read Performance

Random read latency. Figure 8 shows the effect of AIOS
on FIO random read latency and throughput with varying
block sizes. The figure shows that AIOS reduces random read
latency by 15–33% when compared to the vanilla kernel on
both Z-SSD and Optane SSD. In general, a larger block size
results in greater latency reduction because a larger portion
of the read-related kernel computation gets overlapped with
the device I/O operation (see Figure 4). One important note
is that AIOS achieves single-digit microseconds latency for a
4 KB random read on Optane SSD, which was previously not
possible due to substantial read path overheads.
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Figure 9: FIO 4 KB random read latency and throughput (in
IOPS) with varying the number of threads.
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Figure 10: Single-thread FIO sequential read latency and
bandwidth with varying block sizes.

Polling vs. interrupt. Figure 8 also shows the impact of I/O
completion scheme to the read latency. In the figure, AIOS-
poll denotes the AIOS scheme using not interrupt but polling
as its I/O completion method. In general, polling is better
than interrupt in terms of latency because it eliminates con-
text switches [47]; Table 1 has shown that context switches
account for the largest fraction in kernel time. With small
I/O sizes, the latency reduction from polling is comparable
to that from AIOS. However, with large I/O sizes, the latency
reduction from AIOS is greater than that from polling because
of I/O-computation overlap to a greater extent. Please note
that the interrupt mode is used by default in the rest of this
section.
Random read throughput. Figure 9 shows the FIO 4 KB
random read latency and throughput in I/O operations per
second (IOPS) with varying the number of threads. Here,
each thread is set to issue a single I/O request at a time (i.e.,
queue depth is one). In this setting, a large number of threads
means that a large number of I/O requests are outstanding,
hence mimicking high queue-depth I/O. As shown in the
figure, both Z-SSD and Optane SSD achieve notably higher
IOPS (i.e., up to 47.1% on Z-SSD and 26.3% on Optane SSD)
than the baseline when the number of threads is less than 64.
From that point, the device bandwidth gets saturated, and thus
AIOS does not result in additional performance improvement.
Sequential read bandwidth. Figure 10 shows the effect of
AIOS on a single-thread sequential read workload with vary-
ing block sizes. Because the workload uses buffered reads, the
readahead mechanism in Linux prefetches data blocks with
large block size (128 KB) into the page cache. This results in
high sustained bandwidth. In both Z-SSD and Optane SSD
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Figure 11: Fsync performance with different journaling
modes, number of threads and block sizes on Optane SSD.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  100  200  300  400  500

L
at

en
cy

 (
u

s)

IOPS (k)

Vanilla

1 2 4
8

16

AIOS

(a) fdatasync, # of threads

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  200  400  600  800

L
at

en
cy

 (
u

s)

Bandwidth (MB/s)

Vanilla

4KB 8KB
16KB

32KB

64KB

128KB

AIOS

(b) fdatasync, block sizes

Figure 12: Fdatasync performance with ordered mode with
varying the number of threads and block sizes on Optane
SSD.

cases, AIOS enables higher sustained bandwidth usage only
for 4 KB block reads. For 16–128 KB blocks, AIOS does not
result in any bandwidth improvement because the baseline
scheme already reaches peak bandwidth.

4.2.2 Write Performance

Fsync performance. Figure 11 shows the performance im-
pact of AIOS on FIO 4 KB random write followed by fsync
workload. Here, we evaluate two journaling modes: ordered
mode and data-journaling mode. With a single thread, our
scheme shows IOPS improvement by up to 27% and 34% and
latency reduction by up to 21% and 26% in the ordered mode
and data journaling mode, respectively. With increasing the
number of threads, natural overlap between computation and
I/O occurs, thereby diminishing the performance benefit of
our scheme. With large block sizes, the long I/O-computation
overlapping happens, thereby widening the absolute perfor-
mance gap between our scheme and the baseline. In the data-
journaling mode, the length of the overlapped portion is longer
than that of the ordered mode, and thus its latency advantage
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Figure 13: Normalized Latency of FIO 4 KB random read or write workloads with varying optimization levels on Optane SSD.

is slightly larger than that of the ordered mode.
Fdatasync performance. Figure 12 shows the performance
impact of AIOS on FIO 4 KB random write followed by
fdatasync under the ordered mode. Unlike fsync, fdatasync
does not journal metadata if the metadata has not changed;
hence showing fewer performance gains than the fsync cases.
Our AIOS presents up to 12% IOPS increase with a single
thread. AIOS shows up to 10.5% latency decrease on the
4 KB random write workload using a single thread.

4.2.3 Performance Analysis

Read latency. Figure 13(a) compares the 4 KB random read
latency on Optane SSD with varying optimization levels. The
leftmost bar represents the baseline, and the next five bars
represent the latency with cumulatively applying the optimiza-
tions presented throughout the paper. First, the preloading of
extent tree (+Preload, Section 3.2.1) shows up to 3.1% latency
reduction. Second, bypassing the block multi-queue schedul-
ing (+MQ-bypass) provides 1.1% of additional latency reduc-
tion. The complete use of LBIO (+LBIO, Section 3.1) reduces
I/O latency additionally by up to 12.5% because of its low
overhead. By overlapping only cache indexing (Section 3.2.3)
and page allocation (Section 3.2.2) with device I/O operation,
the latency is reduced by up to 11.9% (+Async-page). Finally,
the asynchronous DMA mapping/unmapping (+Async-DMA,
Section 3.2.4) further reduces the I/O latency by up to 7.8%.
The latency benefit of LBIO is similar across different block
sizes. The benefit of the asynchronous operations, however,
increases as the block size increases.
Write latency. Figure 13(b) compares the 4 KB random
write+fsync latency on Optane SSD with varying optimiza-
tion levels. For the write operation, the use of LBIO (+LBIO)
shows up to 9.8% of latency reduction. Our asynchronous
write path (+AIOS, Section 3.3) achieves additional latency
reduction by up to 24.4%.
Cost of safety. Figure 13(c) shows the latency penalty of
disabling the deferred DMA unmapping (i.e., unmapping
DMA addresses immediately after I/O completion). AIOS-
strict denotes our scheme without the lazy DMA unmapping
(Section 3.2.4). For a fair comparison, we also measured the
performance of the baseline without the deferred DMA un-
mapping [20] (denoted as Vanilla-strict). As shown in the
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on Optane SSD.

figure, the use of strict DMA unmapping incurs a slight in-
crease in I/O latency for both schemes by 1.2–11.9%.
Overlapping analysis. One of our key ideas is to overlap
computations with I/O so that the I/O command can be submit-
ted as early as possible. To clarify this behavior, we measured
the latency to submit I/O command(s) to a storage device and
present the cumulative distribution function (CDF) of laten-
cies. Figure 14(a) shows the time between the read system
call entry and the I/O command submission. We also show
the time to complete the overlapped operations in our scheme
(denoted as AIOS-overlapped). As shown in the figure, the
I/O submission latency is greatly reduced to 1.63 µs on aver-
age (75% reduction compared to the baseline). Also, note that
the time to complete the overlapped operations is earlier than
the I/O submission latency in the baseline. This is because of
the additional latency reduction achieved by LBIO.

Similar measurement is also made on the write paths. Fig-
ure 14(b) shows the time between the fsync system call entry
and the I/O command submission for journal block(s) and
commit block (denoted as -journal and -commit, respectively).
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Figure 15: DBbench on RocksDB Performance (IOPS) with
varying the number of threads.
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Figure 16: Normalized CPU usage breakdown for DBbench
(readrandom and fillsync) on RocksDB using eight threads.

As shown in the figure, our scheme brings the I/O command
submission times forward. Interestingly, the time to submit
commit block I/O in AIOS is even earlier than the time to
submit journal block I/O in the baseline.

4.3 Real-world Applications
4.3.1 Key-value Store

Performance. Figure 15 demonstrates the performance result
of DBbench on RocksDB. Specifically, we evaluate the read-
random (64 GB dataset, 16-byte key and 1000-byte value)
and fillsync (16 GB dataset) workloads in DBbench, each
representing the random read-dominant case and the random
write (and fdatasync)-dominant case. Overall, AIOS demon-
strates notable speedups on the readrandom workload by 11–
32% and the fillsync workload by 22–44%. Recall that AIOS
allows duplicated I/Os because of the lazy page cache in-
dexing feature (Section 3.2.3). Duplicated I/Os happen in
this experiment. However, the frequency of such events is
extremely low (e.g., less than once in 10 million I/Os on the
readrandom workload).
CPU usage breakdown. Figure 16 shows the normalized
CPU usage breakdown analysis of each workload using eight
threads. Overall, AIOS reduces the CPU time spent on I/O
wait and kernel. This indicates that AIOS effectively overlaps
I/O operation with kernel operations without incurring extra
overhead and LBIO effectively reduces the block I/O man-
agement overhead. Furthermore, by providing a low random
read and write latency, AIOS reduces the overall runtime as
well. The trend is similar in both Z-SSD and Optane SSD.
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Figure 17: Filebench-varmail performance with varying the
number of threads.

 0

 10

 20

 30

 40

1 2 4 8 16

T
X

/s
 (

k
)

# of threads

Vanilla
AIOS

(a) Z-SSD

 0

 10

 20

 30

 40

1 2 4 8 16

T
X

/s
 (

k
)

# of threads

Vanilla
AIOS

(b) Optane SSD

Figure 18: Sysbench-OLTP-insert performance with varying
the number of threads.

4.3.2 Storage Benchmark and OLTP Workload

Figure 17 and Figure 18 show the Filebench-varmail (default
configuration) and Sysbench-OLTP-insert (10 GB DB table
size) performance with varying the number of threads. On
the single thread cases of Filebench-varmail, utilizing AIOS
results in 29.9% and 29.4% of improved throughput on Z-SSD
and Optane SSD, respectively. Similarly, on the single thread
cases of Sysbench-OLTP-insert, AIOS achieves 15.4% and
16.2% performance increase with Z-SSD and Optane SSD,
respectively. In general, the use of multi-threading diminishes
the benefits of our scheme because of the natural overlap of
computation with I/O happens.

5 Related Work

Many prior works aim to alleviate the overheads of the kernel
I/O stack, some of which are deployed in commodity OS ker-
nels (e.g., Linux). Multi-context I/O paths can increase the
I/O latency due to the overhead of context switching [5, 35].
Today’s I/O path design for NVMe SSDs reduces this over-
head by eliminating the bottom half of interrupt handling [24].
Using polling instead of interrupts is another solution for re-
moving context switching from the I/O path [5, 47]. Hybrid
polling is also proposed to reduce high CPU overheads [9,21].
Simplified scheduling (e.g., Noop) is effective for reducing
I/O latency in flash-based SSDs due to its high-performance
random access [46, 51]. Instead of providing I/O scheduling
in software, the NVMe protocol supports I/O scheduling on
the device side in hardware [14,24]. Support for differentiated
I/O path was introduced to minimize the overhead of I/O path
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for high priority tasks [5, 17, 48, 51], which is similar to our
LBIO. However, to the best of our knowledge, there is no
work applying the asynchronous I/O concept to the storage
I/O stack itself.

There are proposals to change the storage interface for
I/O latency reduction. Scatter/scatter I/O coalesces multiple
I/O requests into a single command, thereby reducing the
number of round trips in storage access [37, 42, 50]. DC-
express attempts to minimize protocol-level latency overheads
by removing doorbells and completion signals [44].

Improving the performance of fsync operation is im-
portant in many applications as it provides data durability.
Nightingale et al. propose to extend the time to preserve
data durability from the return of an fsync call to the time
when the response is sent back to the requester (e.g., remote
node) [23]. Using a checksum in the journal commit record
can be effective in overlapping journal writes and data block
writes [29], albeit checksum collision can become problematic
in production systems [41]. OptFS [7] and BFS [45] propose
write order-preserving system calls (osync and fbarrier).
With the order-preserving system calls, the overlapping ef-
fect in the fsync path will be identical. However, when ap-
plications need the fsync semantic, operations occur syn-
chronously with regard to I/Os.

User-level direct access can eliminate the kernel I/O stack
overhead in storage access [6, 16, 28, 49]. The lack of a file
system can be augmented by many different approaches from
a simple mapping layer [28, 49] to user-level file systems [15,
43, 49]. However, enforcing isolation or protection between
multiple users or processes should be carefully addressed [6],
and hardware-level support is highly valuable [24]. However,
this is not available at the moment.

6 Discussion and Future Work

I/O scheduling. I/O scheduling is necessary for certain com-
puting domains (e.g., cloud computing) [1]. Early versions
of the block multi-queue layer provided no I/O scheduling
capability [3], but recently, several I/O schedulers have been
integrated [8]. Our LBIO eliminates software-level request
queues, and thus the current implementation is not compat-
ible with software-level block I/O schedulers. However, the
NVMe protocol can support device-side I/O scheduling (e.g.,
weighted round robin with urgent priority feature [14, 24]),
which can augment LBIO. Furthermore, we believe that LBIO
can support proper process/thread/cgroup-level I/O schedul-
ing if we relax the static mapping between cores and NVMe
queues. We leave this as future work.
File system coverage. Our current implementation is based
on the Linux kernel with the Ext4 file system. However, we
believe that other journaling file systems (e.g., XFS [39])
or copy-on-write file systems (e.g., Btrfs [31]) may provide
similar opportunities for overlapping computation in the I/O
path with device access, considering out-of-place updates
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Figure 19: FIO random read latency breakdown in compari-
son with Intel SPDK on Optane SSD.

employed by these file systems.
Copy-to-user cost. AIOS greatly reduces the I/O stack over-
head of the vanilla Linux kernel as shown in Figure 19. How-
ever, our proposal does not optimize copy-to-user operations,
which remain as a non-negligible source of the overhead, es-
pecially when the requested block size is large. Although
the in-memory copy is inevitable for buffered reads, we are
seeking solutions to take off the memory copy from the criti-
cal path so that our proposal can compete with the user-level
direct access approach.

7 Conclusion

We propose AIOS, an asynchronous kernel I/O stack cus-
tomized for ultra-low latency SSDs. Unlike the traditional
block layer, the lightweight block I/O (LBIO) layer of AIOS
eliminates unnecessary components to minimize the delay
in submitting I/O requests. AIOS also replaces synchronous
operations in the I/O path with asynchronous ones to overlap
computation associated with read and fsync with device I/O
access. As a result, AIOS achieves single-digit microseconds
I/O latency on Optane SSD, which was not possible due to
high I/O stack overhead. Furthermore, AIOS demonstrates
significant latency reduction and performance improvement
with both synthetic and real-world workloads on Z-SSD and
Optane SSD2.
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