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Abstract—With the increasing computational demands of
neural networks, many hardware accelerators for the neural
networks have been proposed. Such existing neural network
accelerators often focus on popular neural network types
such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs); however, not much attention has been
paid to attention mechanisms, an emerging neural network
primitive that enables neural networks to retrieve most relevant
information from a knowledge-base, external memory, or past
states. The attention mechanism is widely adopted by many
state-of-the-art neural networks for computer vision, natural
language processing, and machine translation, and accounts
for a large portion of total execution time. We observe today’s
practice of implementing this mechanism using matrix-vector
multiplication is suboptimal as the attention mechanism is
semantically a content-based search where a large portion of
computations ends up not being used. Based on this observa-
tion, we design and architect A3, which accelerates attention
mechanisms in neural networks with algorithmic approximation
and hardware specialization. Our proposed accelerator achieves
multiple orders of magnitude improvement in energy efficiency
(performance/watt) as well as substantial speedup over the
state-of-the-art conventional hardware.

Keywords-Attention Mechanism, Accelerators, Approxima-
tion, Neural Networks, Machine Learning, ASIC

I. INTRODUCTION

Neural networks (NNs) are currently one of the most
popular techniques to perform complex AI tasks in various
domains such as computer vision, natural language process-
ing, robotics, etc. With a large amount of data, NNs can
effectively solve a wide range of AI challenges and can often
surpass human performance in many domains. However,
these advantages of NNs come at a high computational cost
involving tens of billions of floating-point operations. In
order to minimize the energy cost of such a large number of
operations and maximize the throughput of NN processing,
many prior works proposed various FPGA or ASIC based
accelerators [1], [2], [3]. These prior works are indeed
very effective in improving the performance and energy
efficiency of the popular NN types such as convolutional
neural networks (CNNs) or recurrent neural networks (RNNs).
However, such accelerators do not provide full support for
an emerging NN primitive such as attention mechanisms.

Attention mechanisms are one of the most important recent
advancements in neural networks. Unlike CNNs and RNNs,
which has a limited capacity to utilize information from

the past or external knowledge, attention mechanisms (also
called memory mechanisms) enable NNs to access and utilize
such information by providing extra connections to past
state cells, explicit memory cells, and so on. Naturally, not
all information from past state cells or explicit memory
cells is equally relevant to what NN is currently processing.
Hence, the attention mechanism determines what is relevant
to the currently processed information through content-based
similarity search and decides where to attend. This attention
mechanism has been recently adopted in many domains
of NNs such as computer vision [4], [5], [6] and natural
language processing [7], [8], [9], [10]. In addition, this
mechanism is also used to enable NNs to solve a class
of complex problems that were previously difficult for
conventional NNs due to their lack of ability to memorize
and retrieve data [11], [12].

In the conventional hardware, an attention mechanism is
usually implemented as dense matrix operations and softmax
operations. A dense matrix-vector multiplication operation
computes the similarity across all search targets and thus the
computational complexity of this operation is proportional
to the number of search targets. In other words, attention
mechanism requires more computation when a NN model
wants to retrieve relevant information over the larger external
knowledge-base, over a longer period of past information, or
from a longer sequence of data. To make it even worse, in
some NN models utilizing self-attention mechanisms [7], [13],
[14], the computational complexity of attention mechanism
is proportional to the square of the search targets (e.g., a
length of the reading passage in the reading comprehension
task). Naturally, this large computational cost of attention
mechanism becomes a limiting factor for the capacity of
the NN models and accounts for a significant portion of the
performance and energy cost of existing models.

To address this challenge and mitigate the bottlenecks aris-
ing from the computational cost of attention mechanisms, we
architect A3, a hardware accelerator for attention mechanisms
in NNs. To design an efficient accelerator, we not only focus
on the efficient implementation of the attention mechanism
in hardware but also focus on reducing the amount of
computation in attention mechanism through algorithmic
optimization and approximation. In particular, based on the
observation that not all search targets are equally likely to
be relevant, our design presents an approximate candidate



1 // key: n× d, value: n× d, query, output: d
2 float[] attention_mechanism (float key[][],
3 float value[][], float query[]) {
4 /* Step 1 : Dot-Product Computation */
5 for i = 0 to n:
6 sum = 0
7 for j = 0 to d:
8 sum += key[i][j] * query[j]
9 dot_product[i] = sum
10 /* Step 2 : Softmax Computation */
11 score = softmax(dot_product)
12 /* Step 3 : Output Computation */
13 for j = 0 to d:
14 sum = 0
15 for i = 0 to n:
16 sum += score[i] * value[i][j]
17 output[j] = sum
18 return output
19 }
20 float[] softmax(float input[]) {
21 sum = 0
22 for i = 0 to n:
23 sum += exp(input[i])
24 for i = 0 to n:
25 output[i] = exp(input[i]) / sum
26 return output
27 }

Figure 1. Pseudocode for an attention mechanism.

selection mechanism to reduce the number of search targets,
and thus the amount of computation. Furthermore, we propose
a specialized hardware pipeline exploiting parallelism to
accelerate approximated attention mechanisms while making
it even more efficient. With this algorithm-hardware co-
design, our proposed accelerator offers significant perfor-
mance improvements and orders of magnitudes improvements
in energy efficiency (performance/W), thereby enabling
existing NN models with attention mechanisms to utilize
larger external knowledge or a longer sequence of data. Our
contributions are summarized as follows.
• We quantify the attention mechanism bottlenecks in NN

models and identify that a substantial portion of time in
NN models is spent on attention mechanisms.

• We exploit the potential for approximation in attention
mechanisms and present an approximation scheme which
enables our proposed hardware to find potentially relevant
search targets while avoiding an exhaustive search.

• We design a specialized hardware pipeline for an attention
mechanism exploiting parallelism and datapath specializa-
tion to significantly improve the performance and energy
efficiency of the attention mechanism.

• We demonstrate that our proposed accelerator achieves
multiple orders of magnitude speedup and energy effi-
ciency over conventional hardware. Furthermore, with our
specialized hardware for the approximation scheme, A3

achieves even higher speedup and energy efficiency while
minimizing the degradation of the model accuracy.

II. BACKGROUND AND MOTIVATION

A. Attention Mechanism

Operation. Attention mechanism is essentially a content-
based search. Figure 1 represents the computation of the
attention mechanism in pseudocode. Given a query vector

John travelled to the hallway.
Mary journeyed to the bathroom.

Smith went to the bedroom.
John moved to the garden.

Statements

Where is John ?
Query

[ 0.57  -0.53  …  -0.02]

[ 1.10   -0.72  …  -0.27]
[ 0.37   -0.27  …  -0.40]
[ 0.40   -0.10  …  -0.05]
[ 1.10   -0.88  …  -0.57]
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Figure 2. Example application of attention mechanism (Step 1 and 2 in
Figure 1) from Facebook bAbI QA [15].

with d dimensions and a key matrix with n vectors where
each vector has d dimensions, the attention mechanism first
computes a similarity score (i.e., dot-product) for each entry
in the key matrix (Step 1 in Figure 1). After this process,
an n-dimensional vector (i.e., dot_product[]) is obtained.
This array is then processed with softmax function (Step 2 in
Figure 1). Finally, the normalized score is used as a weight
to retrieve the weighted sum of vectors from the n× d value
matrix (Step 3 in Figure 1). In short, the set of indices for
the set of vectors in the key matrix which are similar to
the query vector is first obtained, and these indices (along
with weight values) are used to obtain the weighted sum for
the set of vectors from the value matrix. This mechanism is
often called soft attention mechanism since it only consists
of differentiable computations, which makes this mechanism
well-suited for NNs which are trained with back-propagation.

Example Application. Figure 2 introduces a very simple
example which shows how the attention mechanism is utilized
to enable a NN to find a sentence that is relevant to the
question in the Facebook bAbI QA task [15]. In this task, a
list of statements and a question are provided in a natural
language. The goal is to find the right answer to the question.
Note that not all provided statements are necessary to answer
a question. In many NN models solving this task, an attention
mechanism is utilized to identify the most relevant statements
among these provided statements. For example, End-to-End
Memory Network [8] first embeds (i.e., converting natural
language into vector representation as in Word2Vec [16],
Glove [17], FastText [18]) each statement sentence and
query sentence. Then, using the attention mechanism, it
finds the most relevant sentence to the query from the set of
statements. For example, as shown in Figure 2, the attention
mechanism can identify that “John moved to the garden.”
is the most relevant sentence for a query “Where is John?”
by performing a similarity search using the embeddings.
If multiple sentences are required to answer the question,
it updates the query with the relevant sentence found in
the previous iteration and utilizes the attention mechanism
again to retrieve other relevant sentences from the set. After
obtaining all relevant sentences, it utilizes a final weight
matrix to generate the final answer.

B. Cost of Attention Mechanism

For a given n and d, an attention operation requires i)
nd multiplications and n(d − 1) additions in Step 1, ii) n
exponent computations and n− 1 additions, and n divisions
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Figure 3. Portion of the time accountable for attention mechanism of NN
workloads (for the total inference time and for the query response time).

in Step 2, and iii) nd multiplications and (n−1)d additions in
Step 3. Naturally, the number of these computations increases
almost-linearly with both n and d. Here, n represents the
number of data in an external knowledge base or the number
of past states that this mechanism allows models to look for.
Naturally, the larger n allows more powerful NN models.
On the other hand, d is the dimension of a single vector
entry. A single vector in the key matrix usually represents
an embedding of a word, a sentence, a knowledge, or any
other portion of a larger entity. The larger d allows this
embedding to have a richer space and thus can provide a
higher quality embedding. Between n and d, n is much more
likely to increase further since a larger n directly makes the
NN models more powerful by allowing it to search over a
larger number of data to extract useful information.

We analyze the portion of the time spent on attention mech-
anisms in popular NN models. For this analysis, we focus
on three different workloads utilizing attention mechanisms:
End-to-End Memory Network (MemN2N) [8] running bAbI
QA task [15], Key-Value Memory Network (KV-MemN2N)
[19] running WikiMovies QA task [19], and Google BERT
[9] running SQuAD task [20] (see Section VI-A for details).
We run these workloads on Intel Xeon Gold 6128 CPU (all
workloads) and NVIDIA Titan V GPU (BERT only) then
report the profiled data below.

Figure 3 shows that the attention mechanism is responsible
for the significant portion (i.e., over 35% in all workloads) of
the inference runtime. If we take a more in-depth look into
the nature of these tasks, the actual cost of the attention
model is even higher. Most models handling QA tasks
take a substantial amount of time on comprehension (e.g.,
embedding generation) of the provided knowledge (e.g.,
list of statements in bAbI QA task or Wikipedia-oriented
information about various movies in WikiMovies task). Those
processes are query-independent and thus it is possible to
preprocess them before a query is provided. Thus, the actual
critical path (i.e., query response time) of the question-
answering task often does not include such time. The right
side of Figure 3 shows query response time (as opposed to the
total inference time which includes both comprehension time
and query response time) for all workloads. Compared to the
result for the total inference time, the attention mechanism
takes noticeably a larger portion of time (over 70%) in both
MemN2N and KV-MemN2N. The portion of the attention

mechanism in the BERT model remains the same since it
performs comprehension and query response in an integrated
manner. To accelerate attention mechanism and make it more
energy-efficient, we design a specialized hardware accelerator
for the attention mechanism. Section III presents how our
design efficiently handles this operation.

C. Opportunity for Approximation

Typically, in many popular NN model implementations,
the attention mechanism is implemented as a matrix-vector
multiplication (i.e., multiplication of the key matrix and the
query vector) followed by a softmax function again followed
by another matrix-vector multiplication (i.e., multiplication
of the value matrix and the weight vector). Such imple-
mentations can utilize the fast matrix-vector multiplication
capability provided by popular NN processing frameworks
such as TensorFlow [21] and Torch [22]. A dense matrix-
vector multiplication-based implementation is functionally
correct. However, the nature of this operation is a search, not
a dense computation. In reality, most of the computations
performed in the first matrix-vector multiplication have very
little impact on the final output since most score values
become near-zero after the softmax normalization which is
essentially a continuous, differentiable approximation of the
argmax operation which selects the index for the maximum
number in an array.

The intuition behind our approximation proposal is to
avoid such unnecessary computation. By preprocessing the
key matrix, it is possible to obtain a set of candidate rows
which are likely to have high score values without much
computation. By doing so, our proposed scheme can avoid
unnecessary dot product computation, softmax computation,
and final result computation. Section IV presents our pro-
posed approximation scheme and Section V presents the
hardware accelerator module necessary for this approximated
attention mechanism.

III. A3 BASE DESIGN

We introduce the base design of A3, a specialized hardware
accelerator for attention mechanisms in neural networks
which can be integrated to either CPU, GPU, or an existing
hardware accelerator. A3 accelerates the attention mechanism
shown in Figure 1 of Section II. For high throughput and
energy efficiency, A3 employs a pipeline designed with
customized datapath exploiting parallelism. This section
provides an in-depth overview of the base design of A3

without approximation, and later sections introduce an
approximate attention mechanism and extended hardware
designs.

A. Pipeline Design

Base A3 takes three inputs — a key matrix (n × d), a
value matrix (n×d), and a query vector (d) — to compute a
d-dimensional output vector. Figure 5 shows the computation
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Figure 4. Block diagram of the base A3

pattern of the Base A3 in pseudocode. Note that this is slightly
different from the pseudocode in Figure 1 as we reorder
some computations to make it more suited for hardware
implementation. Figure 4 shows the block diagram of the
base A3 pipeline, which implements the pseudocode in
Figure 5. As shown in both figures, the base A3 pipeline
consists of three modules: i) dot-product module, ii) exponent
computation module, and iii) output computation module.
Below, we explain each module in greater details.
1 float[] attention_mechanism (float key[][],
2 float value[][], float query[]) {
3 /* Module 1: Dot-Product*/
4 max = −∞
5 for i = 0 to n:
6 parallel for j = 0 to d:
7 temp[i][j] = key[i][j] * query[j]
8 dot_product[i] = ParallelSum(temp[i])
9 if dot_product[i] > max:
10 max = dot_product[i]
11 /* Module 2: Exponent Computation */
12 expsum = 0
13 for i = 0 to n:
14 dot_product[i] -= max
15 score[i] = exp(dot_product[i])
16 expsum += score[i]
17 /* Module 3: Output Computation */
18 for i = 0 to n:
19 weight[i] = score[i]/expsum
20 parallel for j = 0 to d:
21 output[j] += weight[i] * value[i][j]
22 }

Figure 5. Base A3 pipeline represented with pseudocode.

Module 1: Dot-Product Computation. The first module
of the pipeline (Line 3-10 in Figure 5) computes an inner
product between a single row of the key matrix and a query
vector. This hardware consists of d multipliers and a d-way
adder tree for a sum reduction operation. For each cycle, a
row of the key matrix is loaded (in sequential order) and
each of its vector elements is multiplied by the corresponding
element of the query vector using the array of multipliers.
Then, once the multiplication finishes, these set of values
are passed to the adder tree for a parallel sum reduction.
The result of this operation is stored in the corresponding
register in the dot product outcome register file. This process
is repeated for n times until all rows in the key matrix are
processed. Note that this module also finds the maximum
value among all elements of the dot_product array (Line
9-10 in Figure 5). This value is used by the next module.

Module 2: Exponent Computation. Exponent computation
(Line 11-16 in Figure 5) computes the exponent of each dot-
product value computed by the previous module. Normally,
to perform an exponent computation, a hardware exponent
computation unit should be used. Instead, our design imple-

ments an exponent function using a lookup table. However,
there are two challenges with this approach: handling an
overflow and reducing the size of the lookup table. First, the
outcome of an exponent function increases very rapidly with
the increase in input value, and thus it can easily cause an
overflow in a fixed-point representation for large input. To
counter this, we leverage the fact that softmax is invariant to
the addition (or subtraction) of a constant to all elements in
the vector. Before performing an exponent computation, this
module first starts with subtracting the maximum value of
the input vector from the dot-product value being processed.
With this subtraction, all elements in the input vector will
be less than or equal to zero, and thus the outputs of the
exponent function will always be less than or equal to 1.

The second challenge is that the size of the lookup table
becomes very large when high precision is required. For
example, if we use a 16-bit representation, a lookup table
requires 65,536 entries and such an SRAM can incur large
power and area overhead. To reduce the size of the lookup
table, we exploit the fact that a single exponent operation
can be decomposed into a multiplication of two exponent
operations. For example, as shown below, computing an
exponent for 8-bit input is equivalent to computing an
exponent for two 4-bit inputs (i.e., one for the upper 4-bits
and another for the lower 4-bits) and multiplying them.

e0.101011112 = e0.101000002 × e0.000011112

With this transformation, instead of building a large lookup
table (e.g., one with 65,536 entries), we can utilize two
smaller lookup tables (e.g., each with 256 entries) and a mul-
tiplier to obtain the same outcome. Once the exponent of the
dot-product is computed, this value gets accumulated. This
accumulated value is later used as the softmax denominator
(Line 19 in Figure 5).
Module 3: Output Computation. This module (Line 17-21
in Figure 5) computes the output of the attention operation.
Every cycle, an element of the score vector is divided by the
sum of all score values for normalization. Then, this value
(i.e., weight) serves as a scaling factor for the corresponding
row vector in the value matrix. Each element of a row vector
is multiplied by this value. The result of this computation is
accumulated in the output register. This process is repeated
for n times.
Throughput and Latency. Our proposed hardware can
handle three queries at a time in a pipelined manner. When
a query finishes its computation for a module, it is then
passed to the next hardware module, and thus the next query
can enter the current module. To balance this pipeline, we



deliberately design all three modules to have the matching
throughput (i.e., each module takes n cycles + α to process
a query). Among three modules, the last module has the
longest latency of n + 9 (n cycles to handle n rows in a
pipelined way, 7 cycles for a division, and 2 cycles for a
multiplication and accumulate). Thus, the pipeline latency is
3n+27 cycles and the throughput is n+9 cycles per query.

B. Quantization

Most NN tasks are tolerant to certain levels of errors by na-
ture and can thus operate with lower bitwidth representations
while keeping the accuracy of higher bitwidth representations.
In such a case, utilizing a lower bitwidth is crucial to the
accelerator design since many of the registers’ or computation
unit’s energy cost scales linearly or quadratically with the
bitwidth of a representation. In addition, since floating-point
operations cost much more energy than fixed-point ones,
it is often beneficial for specialized accelerators to utilize
a fixed-point representation. Our model first quantizes the
provided floating-point input to i integer bits and f fraction
bits (plus a sign bit), and then utilizes different bitwidths for
each stage of the pipeline to maintain the precision and avoid
an overflow while minimizing the energy cost. Below, we
explain our rationale for our choice of fixed-point bitwidths
for the pipeline. We evaluate the impact of quantization in
Section VI-B.
Integer Bitwidths. Integer bitwidths are determined by the
dynamic range of values. Suppose i (e.g., i = 4 is used
for our evaluation) integer bits are required to represent
the elements of the input key matrix and the query vector.
In other words, the value of such elements is limited to a
range between −2i+1 and 2i−1. In the dot-product module,
these input values are first multiplied and stored in temp[][],
which requires 2i bits to avoid an overflow and maintain
precision. Then, the sum of d temp[][:] values are stored
in dot_product[] which requires log2(d)+2i bits. Then, in
the exponent computation module, the value of the maximum
elements in dot_product[] is subtracted from all elements
in dot_product[], which requires one extra integer bits for
dot_product[]. After the exponent computation, the value
of score[] is now limited to a range between 0 and 1 and
thus no integer bit is required. For expsum, which is a sum
of n values in score[], log2(n) bits are required, and for
weight[], no integer bit is required since their value is still
bounded to a range between 0 and 1. For the final output[],
i+ log2(n) bits are required.
Fraction Bitwidths. Fraction bitwidth is directly related to
the precision of the value. Assume we utilize f (e.g., f = 4 is
used for our evaluation) bits to represent the elements of both
inputs (i.e., key matrix and query matrix). In the dot-product
module, inputs with f fractional bits are multiplied and
stored in temp[][], which now requires 2f bits to maintain
precision. Since additions (or subtractions) do not change the
required number of fractional bits, dot_product[] value also

keeps 2f fraction bits. Keeping 2f fraction bits across this
exponent computation also does not lose precision1 and thus
score[] uses 2f fraction bits as well. weight[] also uses
2f fraction bits since division does not require additional
precision as long as the divisor (i.e., expsum in our case) is
larger than 1. Lastly, output requires 3f = 2f (for weights)
+f (for values) fraction bits.

C. Design Details

Offloading Mechanism. A3 can be integrated with most
devices including CPUs, GPUs, or hardware accelerators
for deep learning. Since the base A3 is a relatively straight-
forward accelerator, it can be integrated to any level of the
memory hierarchy. Before invoking A3, a key matrix and
a value matrix should first be copied to the SRAM buffer
of A3. Note that the time it takes to copy these matrices is
often not a part of the query response time. For example, in
question-answering s, a key matrix and value matrix are ready
on comprehension time (i.e., reads and memorize knowledge)
rather than a query response time (i.e., reads a question and
try to find a relevant knowledge to answer the given question).
In other words, a key matrix and a value matrix are copied
beforehand and the only communication time included to
the query response time is the time it takes for a host device
to copy a query vector to A3. Once the query arrives, A3

will buffer it to the query queue. Whenever a dot-product
module becomes available, it can start the computation for
the query. At the end of the computation, the output vector
will be buffered to the output queue for the host.
Use of Multiple A3 Units. Most NN processing tasks have
a large amount of parallelism. In such workloads, it is
often desirable to handle multiple, independent attention
computations in parallel. In such a case, it is possible to use
multiple copies of our A3 units for a different key, value
matrices sets. On the other hand, there are often cases where
multiple queries are processed to the same set of key and
value matrices. In that case, queries can execute in parallel
through pipelining in a single A3 unit. Note that it is also
possible to utilize multiple instances of A3 units for the same
set of key, value matrices to increase the throughput.
Choice of n and d. A3 can be synthesized for different n
and d values depending on the needs. In our evaluation, we
set n to 320 and d to 64 to fit the largest task we evaluated.
However, A3 can still handle a task that requires even larger
n values. When a larger n is desired, we store first n vectors
to the SRAM while leaving other vectors to the DRAM.
Since A3 accesses both the key matrix and the value matrix
in a sequential manner, it is possible to utilize a prefetcher to

1When the quantization error is positive (i.e., ε > 0), ex+ε − ex =
ex+ε(1 − e−ε) < ε holds true because ex+ε < 1 (∵ x < 0 indicates
x+ε < 0) and 1−e−ε < ε. When ε < 0, a quantization error ex−ex+ε =
ex · (1 − eε) < −ε = |ε| because ex < 1(∵ x ≤ 0) and 1 − eε < −ε.
These inequalities prove that error becomes smaller after the exponential
function when the exponent part is negative.



Key Matrix
-0.6 0.1 0.8
0.1 -0.2 -0.9
0.8 0.6 0.7
0.5 0.7 0.5

Key Matrix (n × d)

Query
0.8 -0.3 0.4
0.8 -0.3 0.4
0.8 -0.3 0.4
0.8 -0.3 0.4

Replicated Query(n × d) 

Element-wise 
Multiplication

Result
-0.48 -0.03 0.32
-0.08 0.06 -0.36
0.64 -0.18 0.28
0.40 -0.21 0.20

1

3

2

Greedy
Score

-0.48
-

0.64
-

1
2

3

Greedy
Score

-0.48
-0.36
0.64
0.40

Greedy
Score

-0.16
-0.36
0.64
0.19

After 1st Iter. After 2nd Iter. After 3rd Iter.kk kth smallest elementkth largest element
True
Score

-0.19
-0.38
0.74
0.19

=
Figure 6. Illustration of the base greedy candidate search algorithm.

read them from a memory without exposing memory latency.
Note that the size of the key matrix and the value matrix
for one of the largest existing models utilizing attention
mechanism (i.e., n = 320 and d = 64 on BERT model) is
still small enough to fit in SRAM so it is likely that the use
of DRAM won’t be necessary for the near future. Unlike
n, d is not likely to vary widely since a choice of too large
d can lead to decrease in model accuracy [23], [24]. For
this reason, it often makes sense to simply assume a large
enough d and use zero-padding when smaller d is desired.

IV. APPROXIMATE ATTENTION

A. Overview
As explained in Section II, the attention mechanism is

essentially a content-based approximate search. In a con-
ventional attention mechanism, the algorithm computes the
similarity score between the query vector and all candidates
(i.e., each row in the key matrix) and translates scores
to weights using softmax function. With those weights, a
weighted sum of each row in the value matrix is computed
and returned.

Here, one important point is that most of those weight
values are often near-zero. Softmax function is a soft (i.e.,
differentiable) version of the argmax function which amplifies
the value differences between a few large entries and other
smaller entries. Since score values are transformed to weights
with this function, candidates with relatively small score
values get near-zero weight. In addition, these near-zero
weights often do not contribute to the accuracy of the model.
Rather, it is more of a byproduct of utilizing a differentiable
version of the max function, which is important for training,
but not for inference. So for these near-zero weights, it is
actually more beneficial to treat them as zeros and avoid
including them for softmax computation and the following
weighted sum computation.

An even better way is to avoid computing the score at
all for rows of the key value matrix that will end up with
the low score, and have near-zero weights after the softmax
computation. For this purpose, we present an approximation
algorithm which can select the candidates that are likely to
have a high score without actually computing the score. The
main intuition behind this approximation approach is that it
is possible to preprocess the key matrix without affecting the
critical path. As explained in Section II, the key matrix (and
the value matrix) is obtained at knowledge comprehension
time rather than question answering time. By preprocessing
the key matrix, our algorithm tries to reduce the number of
operations that can be handled at question answering time

where the query becomes available. In addition, on models
like BERT where multiple queries (e.g., 320) utilize this
same key matrix, the cost of the preprocessing key matrix is
amortized and incurs only a limited amount of overhead.

B. Base Greedy Candidate Search

Inner product computation between a query vector and
a row in a key matrix is a sum of component-wise multi-
plication result across d-dimensions. The main idea behind
our proposed scheme is that looking at a single component-
wise multiplication result provides information about the
final outcome. More specifically, our proposed algorithm
assumes the following: if a multiplication result of a particular
dimension is a large positive number, it is likely that the sum
of multiplication results for all dimensions (i.e., dot product
result) is large as well. Similarly, if a multiplication result of
a particular dimension is a large negative number, it is likely
that the dot product result is not a large positive value. In
fact, a similar intuition is used for other application domains
such as information retrieval [25].

Figure 6 illustrates the basic idea of our algorithm. Given
a key matrix and a query vector, this algorithm first replicates
query vector across rows to make a replicated query matrix.
Then, an element-wise multiplication of these two matrices
is performed. Then, an element at the ith row and the jth
column in the resulting matrix represents a jth dimension
multiplication result between the ith row and the query vector.
Naturally, the sum of all elements in a single row computes
the inner product between a row in the key matrix and the
query vector (represented as True Score in Figure 6).

The main idea of this algorithm is to look at the largest
(or the smallest) element in this result matrix in an iterative
way. During a kth iteration, the algorithm checks the kth
largest (and the kth smallest) element and adds such value
to the corresponding row in the greedy score array. This
process is repeated for M (i.e., a user-configurable parameter)
times. Once these iterations finish, a greedy score array
approximates the true score array. If a row has a positive
greedy score, this indicates that the row has one or more
relatively large positive components. On the other hand, a
row with a negative greedy score indicates that this row has
one or more relatively large negative components. Based on
this observation, our algorithm selects rows that have positive
scores at the end of the iteration as candidates and passes
them to the base A3 dot product module.

This algorithm, in its current form, has a time complexity
of O(nd log nd). In order to select the kth largest element
from the result matrix, all elements of the matrix should



be sorted to avoid performing a linear search every time.
Naturally, an O(nd log nd) time algorithm is not very
useful when full dot product computation (i.e., true score
computation) takes O(nd) time. Below, we introduce the
efficient implementation of this algorithm which exploits
preprocessing steps to make the query response time (i.e., the
time it takes from query arrival to the output) not dependent
on n.

C. Efficient Greedy Candidate Search

Figure 7 shows an algorithm that is functionally identical
to the one explained in the previous subsection and Figure
8 shows example data structures utilized in this algorithm.
While this algorithm is functionally identical to the one pre-
sented in the previous subsection, it utilizes a preprocessing
to minimize the latency at the query response time. In this
algorithm, preprocessing step (Line 1-5) only requires the
key matrix, which is often available at comprehension time,
where an algorithm comprehends knowledge, past states, etc.
for future uses. On the other hand, candidate_selection
happens on query response time where a query is ready.
This is often a critical path since it is desirable to answer
the provided query in a short time. Note that there are
some models where preprocessing cannot happen off-critical
path (e.g., Google BERT). However, models like Google
BERT and Transformer utilize self-attention mechanism
which utilizes the same key matrix for multiple queries (e.g.,
320 times). In such a case, the cost of the preprocessing is
amortized so that models’ performance can still benefit from
approximation.
Preprocessing. During a preprocessing step, each column of
the key matrix is sorted and the result is stored in sortedKey
(Line 1-5 in Figure 7). Then, once the query becomes
available, candidate_selection starts. At the beginning
of candidate_selection, the max_ptr (and min_ptr) is
initialized for each column. The max_ptr is set to the row
index of the entry with the largest value in the column
of the sortedKey matrix if the query component for the
corresponding column (i.e., query[i]) is positive. Otherwise,
it is set to the entry with the smallest value in the column.
The min_ptr is also initialized in a similar, but in the
opposite way. Then, priority queues (i.e., maxQ, minQ) are
initialized. Each entry in each column of the sortedKey
pointed by max_ptr (and min_ptr) is first multiplied with
the corresponding query component and then inserted to
the maxQ (and minQ, respectively) along with its rowID and
colID (Line 12-16).
Iterative Candidate Selection. After the preprocessing, the
iterative candidate selection (Line 17-25) begins. First, an
entry from the maxQ (and minQ) is popped. This entry is the
largest (or the smallest in case of minQ) entry among the
ones currently pointed by max_ptr (and min_ptr). Then, the
score value of the entry pointed by max_ptr (and min_ptr)
is added to the greedy_score array if it is positive (negative).

1 void preprocess (float key[][]) {
2 for i = 0 to d:
3 sortedKey[:][i] = sort(key[:][i])
4 //sortedKey:Sorted List of (val, rowID) pairs
5 }
6 int[] candidate_selection (float query[]) {
7 maxQ = MaxPriorityQueue()
8 // MaxPriorityQueue: Priority queue of (val, rowID,

colID) tuples
9 /* Initialize Pointer */
10 for i = 0 to d:
11 max_ptr[i] = (n-1 if query[i] > 0 else 0)
12 /* Initialize Priority Queue */
13 for i = 0 to d:
14 entry = sortedKey[max_ptr[i]][i]
15 score = entry.val * query[i]
16 maxQ.push(score, entry.rowID, i)
17 /* Iterative Candidate Selection */
18 for iter = 0 to M:
19 maxScore, rowID, colID = maxQ.pop()
20 if maxScore > 0:
21 greedy_score[rowID] += maxScore
22 max_ptr[colID] += (-1 if query[colID] > 0 else 1)
23 nextEntry = sortedKey[max_ptr[colID]][colID]
24 compMultRes = nextEntry.val * query[colID]
25 maxQ.push(compMultRes, nextEntry.rowID, colID)
26 /* Update Candidates */
27 for each (row, score) in greedy_score:
28 if score > 0:
29 candidates.append(row)
30 return candidates
31 }

Figure 7. Pseudocode representation of the efficient greedy candidate search
algorithm. Note that statements related to minQ are omitted for conciseness
since they are mostly symmetric to maxQ operations.
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Figure 8. Illustration of the data structures for the efficient greedy search
algorithm. minQ operations are omitted for conciseness.

After this, the max_ptr (and min_ptr) is updated so that it
can point the next largest (or the smallest) entry in the column.
Finally, the new entry pointed by the updated max_ptr (and
min_ptr) is inserted to the respective priority queue. This
step is repeated for M times and then rows with positive
greedy scores are selected as candidates. Lastly, we apply
a small heuristic — skipping the minQ operation when the
cumulative sum of entries selected by max_ptr and min_ptr
so far is negative — to avoid selecting too few candidates
when overall similarity scores are low.

Unlike in the previous version of the algorithm, the
complexity of candidate_selection is M log d (M loops
each with log d complexity from the iterative candidate
selection step). This re-structured algorithm now can select
likely candidates with a time complexity that scales with user-
defined parameter M . In practice, to maintain reasonable
accuracy, M needs to increase as N increases. However,



an important benefit here is that this algorithm provides
a user a hyperparameter to adjust the balance between
the performance and the accuracy. We evaluate how this
algorithm can effectively estimate the set of likely candidates
across different M in Section VI-B.

D. Post-scoring Approximation

Once a subset of rows of the key matrix is chosen as
candidates, their full scores (i.e., the dot product between the
key matrix row and the query) are computed. Then, those
scores are used as an input for the softmax function and the
outcome of softmax functions are used as weights for the final
weighted sum computation. As briefly explained in Section
IV-A, most of the relatively small dot-product values become
near-zero after the softmax and thus have minimal impact on
the final outcome. To minimize the computation required to
calculate the softmax and the weighted sum, it is beneficial
to avoid including some of the low-scoring candidates for
those steps. One way to perform an approximation on this
step is to sort candidates based on their dot product results
and then only including top scoring rows for the next steps.

One important design choice there is to choose the number
of top scoring rows to include for the next step. An easy
way is to include a static, predefined number of top scoring
rows but a static choice of such number does not necessarily
work for all cases. For example, if high-scoring rows form
a distribution with very low variance, it is better to include
all of those rows for the following softmax computation and
the weighted sum computation. On the other hand, if there
is only one high-scoring row with many low-scoring rows,
it is not beneficial to include more low-scoring rows for the
softmax and the weighted sum computation. For this reason,
we utilize a dynamic post-scoring approximation scheme
which decides whether to include a row for the next steps.
Basically, a score for a particular row is compared with the
top-scoring row’s score and if their difference is larger than
threshold t, such row is excluded for the next steps. If a
row’s score is smaller than the top row’s score by more than
t, this means that this row will have a post-softmax weight
that is at least et× smaller than that of the top-scoring row.
This is because softmax functions utilize the current score
as an exponent term of the base e ≈ 2.718. Throughout the
paper, we use T = 100 ∗ (1/et) instead of directly using t.
With this notation, T indicates that an entry should have a
post-softmax weight that is at least T (%) of the maximum
weight to be included for the next steps.

V. A3 WITH APPROXIMATION

To efficiently implement the approximation scheme intro-
duced in Section IV, we design new hardware accelerator
modules for candidate selection and post-scoring approxima-
tion. Then, we connect them to the base attention mechanism
accelerator introduced in Section III to complete A3 with
approximation capability.

A. Candidate Selection Module

This hardware is designed to accelerate the algorithm
described in Figure 7. By utilizing the customized hardware
and exploiting hardware parallelism, our candidate selection
module enables us to significantly reduce the execution time
and improve the energy efficiency of the algorithm. Figure 9
shows the block diagram for the candidate selection module.

This module has SRAM structures which buffer a prepro-
cessed version of the key matrix as described in Section IV.
In these SRAM modules, the sorted version of each column
in the original key matrix are stored. And along with the
values, each word in the SRAM also includes the row index
of the corresponding value in the original key matrix just
like in Figure 8. It also has two sets of d registers (max_ptr
and min_ptr), two multipliers, two sets of d circular queues
to buffer component multiplication results for each column,
two d-dimensional comparator tree to find the maximum
and minimum value from d component multiplication results,
and a set of greedy score registers where greedy scores are
updated.
Pipeline Design. A naive conversion of the algorithm in
Figure 7 to hardware would result in low throughput as
the iterative candidate selection (Line 17-25 in Figure 7)
has dependency across iterations. Specifically, Line 19 is
dependent on Line 25 of the previous iteration and this
effectively makes each iteration of the loop to execute in
series. We break this backward dependency by pre-executing
component multiplication (Line 24) for all d dimensions
for the first few iterations in advance. Assuming the critical
path of the loop body takes c cycles (e.g., c = 4 in our
implementation), our hardware is initialized with c× d pre-
computed component multiplication results (c items each for
each column) in the component multiplication buffer, which
consists of d circular queues (Figure 9). In steady state, our
hardware simply removes one item from this component
multiplication buffer (from the column that has the largest
component multiplication result) and adds one back to that
column c cycles later. Note that this c-cycle refill path is fully
pipelined to allow our hardware to initiate a new iteration
every cycle, thus achieving the throughput of one iteration
per cycle. Below, we explain the operation of the pipeline
in detail.
Initialization. Our hardware first initializes each of max_ptr
and min_ptr to the appropriate values (i.e., either n−1 or 0)
and reads them from SRAM simultaneously. Then, to fill the
component multiplication buffer, our hardware performs i)
2d multiplications where each multiply operation multiplies a
component of the sorted key matrix pointed by max_ptr (and
min_ptr) and the corresponding element of the query, ii)
update of max_ptr (and min_ptr) register for each column.
This process is repeated for a total of 4 times to fill the two
sets of 4× d buffer. This process requires 8d multiplications,
and it will normally take 4d cycles since this module only
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Figure 9. Simplified block diagram of the A3 candidate selection module

has two multipliers. However, to reduce this cost, we use d
multipliers in the dot product module and d multipliers in
the output computation module of the base A3 (Figure 4)
just for this process. Once this finishes, this module goes to
a steady state where only two multiplications happen every
cycle.
Candidate Selection. In steady state, the hardware performs
an iterative candidate selection (similar to Line 19-26 in
Figure 7). Every cycle, this hardware performs multiple
operations simultaneously: i) load an item from the specific
column of the sorted key matrix that is pointed by the
corresponding max_ptr (and min_ptr) register and buffer it
near a multiplier, ii) perform a multiplication of the buffered
data and the corresponding query elements and update the
corresponding circular queue of the component multiplication
result buffer, iii) find the maximum value among d items
(i.e., the oldest items of each circular queue) with a d-way
comparator and signal the selected column to update max_ptr
(and min_ptr), and iv) update the greedy score register array
with the value outputs from iii). Note that our candidate
selection hardware utilizes a d-dimensional comparator tree
to obtain the maximum (and minimum) entry among d
elements in a single cycle instead of logd cycles. With this
hardware support, the complexity of the algorithm in Figure 7
becomes O(M) instead of O(Mlogd). Since this module
performs one iteration every cycle in steady state, it takes M
(plus a few extra) cycles to complete the iterative candidate
selection part. Once completed, the hardware linearly scans
the greedy_score registers (up to 16 contiguous entries per
cycle) and sends one row ID (with positive score) to the next
module.

B. Post-Scoring Selection Module

The post-scoring selection module is in charge of identi-
fying a certain number of top entries from the dot-product
results following the mechanism described in Section IV-D.
This hardware is integrated at the beginning of the exponent
computation module in base A3 and its primary function is
to select a candidate row with the maximum dot product
value among remaining ones. For this purpose, this module
simply computes the difference between the maximum dot
product value and remaining entries at high throughput (e.g.,
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Figure 10. High-level block diagram of the A3 design with approximation.

16 entries per cycle). If the difference between a compared
value and the top-scoring entry’s value is larger than the
preset threshold t, this value is passed to the next module
(i.e., exponent computation module). This module essentially
consists of 16 subtractors and comparators.

C. A3 HW with Approximation Support

Figure 10 shows the high-level block diagram of the A3

design. At the very beginning, given a preprocessed key
matrix, the candidate selector module extracts the list of
rows and passes it to the dot product module. The dot-
product module computes the dot product results for the
provided list of candidates and passes it to the post-scoring
selector, which is integrated with the exponent computation
module. The post-scoring selection module selects a few
rows to be included for the exponent computation and then
the exponent computation module computes the exponent for
those rows. Finally, the output computation module generates
the output by computing the weighted sum. Assuming C
candidates are selected from the candidate selector module
in M iteration and K entries are again selected from the
post-scoring selection module, the total latency for A3 is
M + C + K + K + α cycles where α is a constant. The
throughput is limited by the candidate selector module (≈M
cycles) since our candidate selector module selects less than
M candidates because i) each iteration may update the greedy
score for the same row and ii) only the rows ended up with
the positive greedy scores are selected.

VI. EVALUATION

A. Workloads

We use three representative neural network (NN) models
utilizing attention mechanisms. First, we evaluate our A3 with
Facebook’s End-to-End Memory Network (MemN2N) [8]
running bAbI QA task [15] which consists of twenty types of
question-answering tasks. For each task, a set of statements is
provided and the model aims to find the right answer through
attention mechanisms which find the most relevant statement
to the question. Second, we evaluate our design with Key-
Value Memory Network (KV-MemN2N) [19] running Wiki-
movies [26] question-answering tasks. In this workload, Key-
Value Memory Network model first comprehends multiple
excerpts about movies from Wikipedia, and then is expected
to answer questions about movies. Lastly, we evaluate our
proposal with Google BERT (base) [9], which utilizes a self-
attention mechanism in Google Transformer [7] to solve many
tasks in natural language processing. Among the many tasks



that this model can handle, we evaluate Stanford Question
Answering Dataset task (SQuAD v1.1 [20]).

We used the embedding dimension d = 64 for all
workloads but each workload has different n. bAbI QA
is a relatively small task whose average n (i.e., number of
statements for a query) across all test inputs is 20 and the
maximum is 50. For Wikimovies dataset, average n (i.e., the
number of potentially relevant knowledge) is 186. Lastly, for
SQuAD workload, n (i.e., the maximum length of an input
passage and a question in terms of word counts) is 320.

B. Accuracy Evaluation

Methodology. To estimate the impact on the accuracy of our
approximation scheme proposed in Section IV, we implement
a software model for approximation and integrate this model
with our target workload’s official (or endorsed) open-source
implementations. Specifically, we use the native Python
implementation [27] for End-to-End Memory Network, Torch
implementation [28] for Key-Value Memory network, and
Tensorflow implementation [29] for BERT. Note that we only
apply approximation techniques for an inference, which is our
target, and we use test set inputs for accuracy measurements.
For accuracy metric, we utilize one of the main metric used
in the relevant paper for the task: accuracy for bAbI QA,
Mean Average Precision (MAP) for Wikimovies dataset, and
F1 score for SQuAD.
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Figure 11. Impact of proposed candidate selection schemes on accuracy
across varying iteration counts.

Impact of Candidate Selection. Figure 11a shows the
percentage differences of accuracy metric for three workloads
after applying the proposed candidate selection scheme in
Section IV-C. Specifically, we vary M (i.e., iteration count for
candidate selection algorithm in Section IV-C) in Figure 11
to check how varying M impacts accuracy and the number
of candidates selected. As shown in Figure 11a, varying M
from a large number (e.g., n) to a smaller number (e.g., 1/8n)
results in a change in model accuracy. This is because varying
M results in a different number of selected candidates as
shown in Figure 11b. Naturally, the larger the number of
selected candidates, the accuracy of the model increases;
however, it loses benefits of approximation with a large
number of candidates.
Impact of Post-Scoring Selection. Figure 12a shows the
change in model accuracy with the proposed post-scoring
selection scheme (Section IV-D). We vary T (i.e., the
threshold for post-scoring selection algorithm) in Figure 12
to identify how T affects to model accuracy. Here, note
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Figure 12. Impact of post-scoring selection schemes on accuracy across
varying thresholds.

that an entry is not included for the computation if its post-
softmax score would be less than T% of the maximal value.
Thus, the lower T indicates more conservative approximation
and the higher T indicates more aggressive approximation.
As shown in the figure, relatively high T (e.g., 10%) can
still achieve decent accuracy. This essentially proves our
assumption that attention mechanism does not really require
all rows to be inspected and any row that would end up
with low weight can safely be ignored. Figure 12b shows the
normalized number of entries selected in the post-scoring
selection scheme. Higher T results in a lower number of
selected entries.
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Figure 13. Impact of the approximation scheme on model accuracy across
varying workloads.

Impact of Approximation Scheme. Figure 13a shows the
accuracy change after applying both the proposed candidate
selection schemes and the post-scoring selection scheme and
Figure 13b shows the portion of true top 2 (bAbI) or top 5
(Wikimovies, SQuAD) entries included after approximation.
Here, we evaluate two configurations of our approximation
schemes. Approximate (conservative) scheme represents a
conservative scheme (with M = 1/2n and T = 5%),
which loses relatively low accuracy (around 1%) but results
in a larger selection size during candidate selection and
post-scoring selection. On the other hand, approximate
(aggressive) scheme represents an aggressive scheme (with
M = 1/8n and T = 10%) loses an extra accuracy (around
8%) but results in a much smaller selection size during
candidate selection and post-scoring selection. One of the
main strengths of our approach is that M and T are
configurable. By changing M and T , a user always can
select the degree of approximation and choose the trade-
offs between accuracy and performance/energy efficiency.
Figure 13b shows that more aggressive approximation tends
to miss some of the true top 2 (bAbI) or top 5 (Wikimovies,
SQuAD) entries compared to the conservative scheme. Note
that the aggressive approximation configuration may not be
practical on its own for its relatively high decrease in accuracy.



In that sense, this configuration is mostly for exploratory
purposes. However, one thing to note is that speedups and
energy efficiency improvements approximation provide can
be translated to improvements in accuracy through the use of
larger models. For example, Google BERT has a larger pre-
trained model with better accuracy, which naturally spends
more time on attention mechanism. The same time/resource-
accuracy trade-off is observed in top-performing image
classification networks (e.g., Amoebanet [30], NasNet [31])
as well.
Impact of Quantization Scheme. To identify the impact of
precision in number representation, we quantize the original
input to have f fractional bits (as explained in Section III-B)
and then measure its impact on the pipeline. Since our
hardware pipeline is carefully designed to avoid precision loss
across pipelines, no extra precision loss happens throughout
the pipeline. Our experiments show that maintaining a very
small number of fractional bits (e.g., f = 4-bits) has
a negligible impact (i.e., less than 0.1% degradation) on
accuracy across all workloads. This proves our assumption
that attention mechanism is tolerant to approximation.

C. Performance Results

Methodology. We implement a cycle-level simulator for our
proposed accelerator (running at 1GHz) and integrate it into
the open-source implementations of our target workloads to
evaluate our accelerator’s performance. For comparison, we
also profile throughput for attention mechanism processing
on Intel Xeon Gold 6128 CPU [32] (used for all workloads)
and NVIDIA Titan V (Volta) [33] (only used for BERT since
other two workloads did not have a GPU implementation). For
CPU and GPU measurements, we tried our best to optimize
its throughput following Intel performance optimization
guidelines for deep learning workloads [34], [35].
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Figure 14. Normalized average throughput/latency of an attention operation
for each workload across platforms.3

Throughput. Figure 14a shows the average throughput of
processing an attention operation in the base A3 and the
approximate A3, Intel Xeon CPU, and NVIDIA GPU. For
each workload, throughput is normalized to that of the CPU.
As shown in Figure 14a, both base A3 and approximate A3

achieve orders of magnitude higher throughput than Intel
Xeon CPU on MemN2N and KV-MemN2N. For BERT,
A3 achives lower throughput than GPU since BERT’s self-
attention mechanism — essentially a batch matrix-matrix
multiplication instead of a single matrix-vector multiplication
— has easy-to-exploit parallelism. However, since a single A3

unit consumes multiple orders of magnitudes less energy than
the CPU or the GPU (e.g., 103-104×), it is possible to utilize
multiple copies of A3 for better throughput. Specifically,
since BERT’s self-attention mechanism has easy-to-exploit
parallelism, using multiple A3 units can achieve near-perfect
scaling behavior. For this reason, it is possible to achieve
better throughput than the state-of-the-art GPU by utilizing 6-
7 units of approximate (conservative) A3 together. This is very
surprising result considering that A3 is much smaller than
GPUs; this is partly because a large GPU often cannot fully
utilize its resources for attention mechanism computation
whose matrix size is small and the amount of parallelism is
less than what GPU can sustain.

Comparing the base A3 and two configurations of the
approximate A3 show that approximation enables a larger
throughput as well. Note that the throughput increase from
approximation is low on MemN2N because of its relatively
smaller n. This can potentially be addressed by utilizing
different numbers of modules for each type of module (e.g.,
use a larger number of candidate selector modules).
Latency. Figure 14b shows the average latency of processing
an attention operation in the base A3 and the approximate
A3. For each workload, latency is normalized to that of the
base A3. Figure 14 shows both base A3 and configurations
for the approximate A3 achieve a very low average latency.
Furthermore, both approximation-enabled configurations of
A3 achieve significantly better latency than the base A3.
This is because the approximate A3 performs a substantially
lower number of computations thanks to approximation.
Comparing two approximation-enabled configurations shows
that aggressive approximation can offer noticeably higher
speedup than conservative approximation at a relatively low
or moderate accuracy cost shown in Figure 13.
Preprocessing. For BERT, the preprocessing happens on the
critical path and thus we included the amortized preprocessing
overhead (measured on GPU) to A3 bars (only approximate
configurations) in Figure 14. Specifically, BERT utilizes the
self-attention mechanism which reuses the same key matrix
for n queries (n=320) so the effective overhead per query is
only 1/n of the total preprocessing time. This overhead trans-
lates to 7% (conservative) or 24% (aggressive) throughput
reduction and <11% latency increase. As shown in Figure 14,
A3 achieves significant benefits from approximation even
with the (amortized) preprocessing overhead.

D. Area, Power, Energy and Test Chip

Methodology. We implement A3 with hardware construction
language Chisel [36] and compile it to Verilog, and finished
all the functional verifications. Then, we synthesize the
Verilog code for the 1GHz clock frequency using Synopsys
Design Compiler [37] and TSMC 40nm standard cell library.

3We show the numbers above each bar, which represent the value
normalized to the base A3 instead of CPU to help readers see the impact
of approximation.



Table I
AREA AND POWER CHARACTERISTICS OF A3 .

Module Area
(mm2)

Dynamic
Power(mW)

Static
Power(mW)

Modules for Base A3

Dot Product 0.098 14.338 1.265
Exponent Computation 0.016 0.224 0.053

Output Computation 0.062 50.918 0.070
Modules for Approximation Support

Candidate Selection 0.277 19.48 5.08
Post-Scoring Selection 0.010 2.055 0.147

SRAM Modules
Key Matrix (20KB) 0.350 2.901 0.987

Value Matrix (20KB) 0.350 2.901 0.987
Sorted Key Matrix (40KB) 0.919 6.100 2.913

Total
A3 2.082 98.92 11.502
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Figure 15. Energy efficiency and energy breakdown of A3 across workloads
3 For the energy breakdown, three bars represent base A3, approximate A3

(conservative), and approximate A3 (aggressive) from left to right.

We used n = 320 and d = 64 to fit our largest workload.
For number representation (Section III-B), we use i = 4 and
f = 4.
Area. As shown in Table I, A3 utilizes less than 2.082mm2

area. Note that our CPU baseline Skylake-SP Intel Xeon
Core with 14nm process uses a die area of 325mm2 [38],
which is 156× larger than a single A3 unit. Similarly, our
baseline GPU Titan V has 815mm2 die size [39] at a 12nm
technology node, which is 391× larger than our A3. And the
effective area difference becomes much larger if we consider
that our A3 is synthesized at 40nm technology.
Energy and Power. Table I shows the dynamic and static
power usage of A3 and Figure 15 shows the energy efficiency
and energy breakdown of our proposed accelerator running
various workloads. For CPU and GPU energy numbers, we
assumed their power consumption is equal to their TDPs.
Table I shows that A3 spends less than 100mW when all
modules are fully utilized. This is already much lower than
that of the Intel Xeon CPU (115W TDP) or NVIDIA Titan V
GPU (250W TDP). And when running the real workloads, it
consumes even less amount of power than its peak power due
to a pipeline imbalance resulting from the approximation. As
shown in Figure 15a, A3’s low power usage, combined with
its high throughput, leads to multiple orders of magnitude
energy efficiency improvement compared to the conventional
hardware (e.g., over 104× on CPU 103× on GPU), despite
the fact that our accelerators are synthesized at a 40nm
technology node. In addition, comparing the base A3 and the
approximate A3 demonstrates that approximation leads to a
further energy saving by avoiding unnecessary computation.

Figure 16. Post-layout image (left) and die photo (right) of a prototype
A3 chip

Lastly, Figure 15b shows that base A3 spends most of its
energy on the output computation module due to its large
register structures. On the other hand, approximate A3 spends
most energy on candidate selection module because other
modules are not heavily utilized once the candidate selection
module substantially reduces the number of rows to process.
Test Chip. We have taped out a scaled-down version of the
A3 test chip in TSMC 40nm Low Power (LP) technology with
standard cells. The test chip implements the full functionality
of A3 with approximation but is scaled down to fit in a
1mm2 silicon die, including I/O pads, host interface, and
other peripherals. The core area is 0.36mm2, which is sized
just enough to run the smallest model used for evaluation
(MemN2N). Figure 16 shows a post-layout image and a die
photo. The test chip communicates with the host ARMv8
CPU via custom JTAG-like serial interface over 3.3V general-
purpose I/O (GPIO) pins. To drive the test chip, we have
also written a host device driver as well as a Python-based
software testing environment that can run MemN2N. We
have verified the functionality of the chip to confirm that
everything works as intended.

VII. RELATED WORK

Attention Mechanism. Attention mechanism in natural
language processing is used for translation [7], [10], question
answering [8], [9], [19], [40], [41], [42], language inference
[13], [43], summarization [44], [45], document classification
[46], [47], etc. In addition to natural language processing, the
attention mechanism has also been used in computer vision
tasks. Examples include visual (and multi-modal) question-
answering tasks [5], [6], [48], image caption generation
[4], [49], image classification [50], [51], [52], [53], action
recognition [54], saliency detection [55], and so on. Attention
mechanism can also be used as a long-term memory mecha-
nism for NNs. Neural Turing Machine [11] and Differentiable
Neural Computer [12] from Google Deepmind focus on this
to enable a NN to solve a complicated task which requires
an explicit, long-term memory. Our work applies to many
of these NN models.
Approximate Similarity Search. Similarity search is an
important technique in other domains such as recommenda-
tion systems. There are several prior works relevant to our
work to avoid an exhaustive linear search during a similarity



search. For example, some approaches [56], [57], [58] utilize
a variant of locality sensitive hashing, a tree-structure, or a
clustering algorithm to cluster (or hash) items to different
groups before the query arrives. On the other hand, a greedy
approach [25] similar to ours performs a greedy iterative
search. A few prior works exploit the idea of performing
an approximated similarity search for attention mechanisms
and implemented them in software [59], [60]. Our work
presents a new hardware-friendly algorithm and designs a
hardware accelerator to realize the approximation potential
in the similarity search.
Hardware NN Accelerator. There exist various hardware
accelerators for NN computations. CNN accelerators for
custom ASIC or FPGA device [1], [2], [3], [61], [62], [63],
[64], [65], [66], [67] and RNN accelerators [3], [68], [69],
[70] are proposed to accelerate NN processing by exploiting
massive parallelism and optimizing data movements. There
are hardware accelerators exploiting sparsity [68], [71], [72],
[73], [74] for a specific context of CNN/RNNs to improve
their efficiency; however, these works mostly focus on
sparsity (i.e., a large portion of its data is zero) in weights and
activation of CNNs or RNNs while our accelerator focuses
on the approximation potential of the attention mechanism
(operating on a dense matrix).
Hardware-supported NN Op. Approximation. Several
works have applied the approximate computing concept
to the neural network operations to reduce the amount of
computation. Specifically, SnaPEA [75] exploits the unique
characteristics of the neural network convolution operation
and presents a hardware accelerator that can benefit from
an approximation scheme exploiting such characteristics.
Similarly, Raha et al [76] presents an RnR (reduce and rank)
accelerator that can be used to reduce the energy consumption
on certain neural network operations exhibiting the reduce-
and-rank pattern through approximation. Finally, there exist
several previous works that focus on accelerating MAC
(multiply and accumulate) operations prevalent in neural
networks through approximate MAC unit [77], [78], [79].

VIII. CONCLUSION

Neural network (NN) has been a popular target for
hardware accelerators for its wide applicability, a large
amount of computation, massive parallelism, and static
computation pattern. However, the presence of an existing
accelerator does not necessarily preclude the need for an
another accelerator for NN primitives. In fact, when other NN
primitives (e.g., CNNs, RNNs) are optimized, it is critical
to accelerate relatively less optimized portion according
to Amdahl’s Law. Our work identifies the importance of
the emerging NN primitive — attention mechanism — and
accelerates it with software-hardware co-design to achieve
orders of magnitude energy efficiency improvement over the
conventional hardware.
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